Comune di Santa Maria del Cedro

Provincia di Cosenza

PROGETTO: REALIZZAZIONE NUVO EDIFICIO PUBBLICO, DESTINATO A SCUOLA CON STRUTTURA IN LEGNO NEL COMUNE DI SANTA MARIA DEL CEDRO (CS). CLASSE D'USO DELLA COSTRUZIONE 3.

<u>PRATICA:</u> REALIZZAZIONE DEGLI INTERVENTI DIRETTI ALL'AMPLIAMENTO DELLA SCUOLA ELEMENTARE UBICATA IN VIA ORSOMARSO DEL COMUNE DI SANTA MARIA DEL CEDRO FRAZIONE MARCELLINA.

II Committente

Comune di Santa Maria del Cedro

via Nazionale n.16 87020, Santa Maria del Cedro (CS) Tel. 0.985/5727 - C.F. 00433700788

Il Responsabile del Servizio

Dott. Ing. Giuseppe Durante

I Progettisti e DD.LL.

Dott. Geom. Giuseppe Riccetti

Geom. Carmine Covucci

Data: novembre 2016

Tavola:	Elaborato :				
D1	Relazione Geotecnica e sulle Fondazioni				
Scala:	Visti e Pareri :	Aggiornamenti :			

Scala:

Aggiornamenti :

Normativa di riferimento

- Legge nr. 1086 del 05/11/1971.

Norme per la disciplina delle opere in conglomerato cementizio, normale e precompresso ed a struttura metallica.

- Legge nr. 64 del 02/02/1974.

Provvedimenti per le costruzioni con particolari prescrizioni per le zone sismiche.

- D.M. LL.PP. del 11/03/1988.

Norme tecniche riguardanti le indagini sui terreni e sulle rocce, la stabilità dei pendii naturali e delle scarpate, i criteri generali e le prescrizioni per la progettazione, l'esecuzione e il collaudo delle opere di sostegno delle terre e delle opere di fondazione.

- D.M. LL.PP. del 14/02/1992.

Norme tecniche per l'esecuzione delle opere in cemento armato normale e precompresso e per le strutture metalliche.

- D.M. 9 Gennaio 1996

Norme Tecniche per il calcolo, l' esecuzione ed il collaudo delle strutture in cemento armato normale e precompresso e per le strutture metalliche

- D.M. 16 Gennaio 1996

Norme Tecniche relative ai 'Criteri generali per la verifica di sicurezza delle costruzioni e dei carichi e sovraccarichi'

- D.M. 16 Gennaio 1996

Norme Tecniche per le costruzioni in zone sismiche

- Circolare Ministero LL.PP. 15 Ottobre 1996 N. 252 AA.GG./S.T.C.

Istruzioni per l'applicazione delle Norme Tecniche di cui al D.M. 9 Gennaio 1996

- Circolare Ministero LL.PP. 10 Aprile 1997 N. 65/AA.GG.

Istruzioni per l'applicazione delle Norme Tecniche per le costruzioni in zone sismiche di cui al D.M. 16 Gennaio 1996.

- Norme Tecniche per le costruzioni D.M.14/01/2008.

Istruzioni per l'applicazione delle Norme Tecniche per le costruzioni in zone sismiche di cui al D.M. 14 Gennaio 2008

Modello per il calcolo del carico limite

Il terreno di fondazione è considerato costituito da due strati uno superiore ed uno inferiore al piano di posa della fondazione. La presenza della falda è presa in considerazione in base alla sua profondità dal piano campagna. Per la verifica a carico limite si adotta l'approccio 2 con una unica combinazione di carico A1+M1+R3, in cui i coefficienti parziali di sicurezza per le resistenze sono unitari ed il coefficiente di sicurezza globale è 2.3 per il carico limite verticale e 1.1 per il coefficiente di sicurezza a carico orizzontale. L'effetto del sisma è portato in conto considerando che la forza applicata a causa del sisma non è nè centrata nè verticale cio' comporta l'applicazione di fattori correttivi perl'inclinazione e una riduzione delle dimensioni della fondazione in funzione dell'eccentricità. Di seguito si riporta il calcolo per le combinazioni più gravose; in calce è riportato un riepilogo per tutte le combinazioni.

Carico limite

Il calcolo del carico limite è valutato secondo la formula di Terzaghi-Meyerof

$$Q_{\lim} = q \cdot Nq \cdot \zeta q \cdot \xi q \cdot \alpha q \cdot \beta q \cdot \psi q + c \cdot Nc \cdot \zeta c \cdot \xi c \cdot \alpha c \cdot \beta c \cdot \psi c + \gamma \cdot N\gamma \cdot \frac{B}{2} \cdot \zeta \gamma \cdot \xi \gamma \cdot \alpha \gamma \cdot \beta \gamma \cdot \psi \gamma$$

dove:

 N_q,N_c,N_γ =Coefficienti di Terzaghi - Meyerof per la striscia indefinita

 ζ_q , ζ_c , ζ_γ = coefficienti correttivi di forma funzione del rapporto B/L

 ξ_q , ξ_c , ξ_γ = coefficienti correttivi di inclinazione del carico dipendente da H/V

 α_q , α_c , α_r = coefficienti correttivi di inclinazione del piano di posa

 β_q , β_c , β_γ = coefficienti correttivi di inclinazione del piano campagna

zq,zc,zg= coefficienti sismimici per considerare l'effetto cinematico, considerati solo in presenza di sisma

 ψ_q , ψ_c , ψ_r = coefficienti correttivi di punzonamento dipendenti da un indice di rigidezza del terreno, in particolare detto Ir l'indice di rigidezza del terreno (secondo la teoria di Vesic dipendente dal modulo tangenziale G=0.5 E/(1+ ν) del terreno, dalla coesione c, dalla tensione effettiva alla profondità B/2 sotto il piano di posa, dall'angolo di attrito del terreno di fondazione) ed Ircrit l'indice di rigidezza critico (dipendente dall' angolo di attrito del terreno e dal rapporto B/L) risulta che i coefficienti di punzonamento sono uguali alla unità quando Ir>=Ircrit, mentre sono minori dell' unità quando Ir<Ircrit.

Oltre a queste correzioni un' altra deriva dalla eccentricità del carico riducendo le dimensioni della fondazione in modo che il carico risulti centrato rispetto alla fondazione ridotta, dette $'e_b'$ ed $'e_l'$ le eccentrità del carico nella direzione di B ed L il carico limite si calcola per una fondazione di dimensioni ridotte B' =B-2 e_b e L' =L-2 e_l

Altra correzione deriva dalla presenza della falda inserendo i pesi del terreno immerso nel primo e terzo termine, in particolare, detta Hf la profondità della falda e D la profondità del piano di posa,si ha:

per Hf<D si valuta la pressione effettiva sul piano di posa considerando che parte del terreno superiore è immerso, mentre nel terzo termine si userà il peso immerso

per Hf>D ed Hf<D+B il peso del terreno del terzo termine si interpola ta i valori immerso e secco secondo la formula: $\gamma = \gamma' + (\gamma - \gamma') *D/B$

per Hf>D+B la falda è trascurata.

I coefficienti di Terzaghi - Meyerof per la striscia ed i coefficienti correttivi sono dati dalle relazioni:

$$N_q = \frac{1 + \sin(\varphi)}{1 - \sin(\varphi)} e^{\pi \tan(\phi)}$$

$$N_c = (N_a - 1)\cot(\phi)$$

Il coefficiente N_{γ} non è suscettibile di una espressione in forma analitica chiusa, ed è stato calcolato per via numerica da diversi Autori. I valori del coefficiente sono riportati nella seguente tabella in funzione dell'angolo ϕ :

φ°	0	1	2	3	4	5	6	7	8
N_{γ}	0	0.07	0.15	0.24	0.34	0.45	0.57	0.71	0.86
φ°	9	10	11	12	13	14	15	16	17
N_{γ}	1.03	1.22	1.44	1.69	1.97	2.29	2.65	3.06	3.53
φ°	18	19	20	21	22	23	24	25	26
N_{γ}	4.07	4.68	5.39	6.2	7.13	8.2	9.44	10.88	12.54
φ°	27	28	29	30	31	32	33	34	35
N_{γ}	14.47	16.72	19.34	22.4	25.99	30.22	35.19	41.06	48.03
φ°	36	37	38	39	40	41	42	43	44
N_{γ}	56.31	66.19	78.03	92.25	109.41	130.22	155.55	186.54	224.64
φ°	45	46	47	48	49	50			
N_{γ}	271.76	330.75	403.67	496.01	613.16	762.89			

$$\begin{split} &\zeta_q = 1 + \frac{B}{L} \tan(\varphi) \\ &\zeta_c = 1 + \frac{B}{L} \frac{N_q}{N_c} \\ &\zeta_r = 1 - 0.4 \frac{B}{L} \\ &m = \frac{2 + \frac{B}{L}}{1 + \frac{B}{L}} \\ &\xi_q = \left[1 - \frac{H \tan(\phi)}{V \tan(\varphi) + BLc}\right]^m \\ &\xi_c = \xi_q - \frac{1 - \xi_q}{N_c \cdot \tan(\varphi)} \\ &\xi_r = \left[1 - \frac{H \tan(\phi)}{V \tan(\varphi) + BLc}\right]^{m+1} \end{split}$$

$$\begin{split} &\psi_{q} = \exp\left(0.6\frac{B}{L} - 4.4)\tan(\phi) + \frac{3.07\sin(\phi)\log_{10}(2I_{r})}{1 + \sin(\phi)}\right) \\ &\psi_{c} = \psi_{q} - \frac{1 - \psi_{q}}{N_{q}\tan(\phi)} \sec \phi \neq 0; \quad \psi_{c} = 0.32 + 0.12\frac{B}{L} + 0.6\log_{10}(I_{r}) \sec \phi = 0 \\ &\psi_{r} = \psi_{q} \\ &\alpha_{q} = \alpha_{r} = (1 - \varepsilon\tan(\phi))^{2} \\ &\alpha_{c} = \alpha_{q} - \frac{1 - \alpha_{q}}{N_{c}\tan(\phi)} \\ &\beta_{q} = (1 - \tan(\phi))^{2}\cos(\phi) \\ &\beta_{c} = \beta_{\lambda} - \frac{q - \beta_{\lambda}}{N_{c}\tan(\phi)} \\ &\beta_{c} = \beta_{\lambda} - \frac{q - \beta_{\lambda}}{N_{c}\tan(\phi)} \\ &\varepsilon < \pi/4; \quad \omega < \pi/4; \quad \omega < \phi \\ &zq = zc = 1 \\ &zg = (1 - kh/\tan(\phi))^{0.45} \\ &kh = \beta \frac{a_{\max}}{g} \cdot \left(vedi \cdot NT - 7.11.3\right) \end{split}$$

Simbologia carico limite fondazione rettangolare:

Base

В

D	Duse
L	Lunghezza
eb	Eccentricità secondo B
el	Eccentricità secondo L
D	Profondità del piano di posa
3	Inclinazione del piano di posa
ω	Inclinazione del piano campagna
ϕ	Angolo di attrito del terreno di fondazione
c	Coesione del terreno di fondazione
G	Modulo tangenziale del terreno di fondazione
γ_1	Peso specifico terreno superiore
γ	Peso specifico terreno di fondazione
γ_{1Sat}	Peso specifico terreno saturo superiore
γ_{Sat}	Peso specifico terreno saturo di fondazione
Hf	Profondità della falda
W0	Peso specifico acqua
Fv	Componente ortogonale dell'azione sulla fondazione
Fh	Componente tangenziale dell'azione sulla fondazione

Modello terreno misto per il calcolo dei cedimenti:

Il terreno è modellato come sequenza di strati che possono essere ad elevata permeabilità o praticamente impermeabili, nel seguito queste due tipologie di terreno verranno indicate con terreni a **Grana grossa** e con terreni a **Grana fina**. Per tale modello si assume che il cedimento complessivo sia la somma di un cedimento immediato ed uno di consolidazione, quest'ultimo dovuto alla dissipazione delle sovra-pressioni neutre che nascono per effetto dell'applicazione dei carichi alla fondazione; data la natura dei terreni questa aliquota di cedimento avviene solo negli strati a bassa permeabilità. Il cedimento immediato invece è somma di due contributi: il primo dovuto ai cedimenti per

effetto della sola variazione di forma nei terreni a grana fina, la seconda dovuta ai cedimenti per effetto della variazione di forma e volume nei terreni a grana grossa, risulta quindi che per i terreni a grana grossa è assente il cedimento di consolidazione. La ipotesi che si pone alla base del metodo è che i terreni a grana grossa possano drenare verso l'esterno, infatti nel caso contrario, (ad esempio nel caso che uno strato sia confinato entro un volume chiuso di terreno a grana fina) le condizioni idrauliche al contorno degli strati a grana grossa sono determinate dalla applicazione del carico alla fondazione ed in particolare, poichè l'acqua non può drenare verso l'esterno il terreno si comporterebbe come un mezzo elastico con modulo elastico pari a quello dell'acqua. La deformabilità degli strati è individuata attraverso il modulo edometrico ed il modulo elastico non drenato per gli strati di terreno a grana fina. Il cedimento è calcolato in base alla teoria di Skempton e Bjerrum per gli strati a grana fina, e secondo la teoria elastica per i gli strati a grana grossa. Il cedimento di consolidazione è valutato in funzione del cedimento edometrico secondo la relazione Wc=βWed dove β è fornito dai diagrammi seguenti espressi in funzione del coefficiente 'A' di Skempton, del rapporto H/B per la striscia ovvero di H/D per il quadrato o cerchio, per valori intermedi si interpola linearmente.

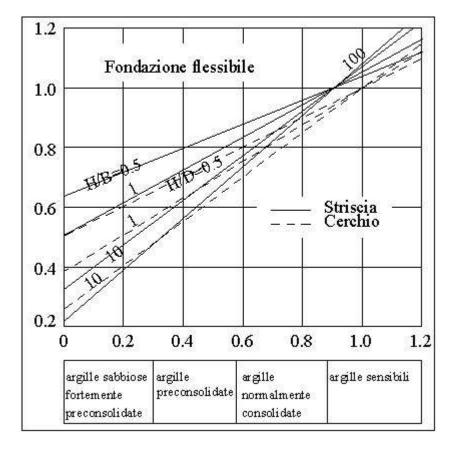
La precedente relazione è applicabile ad uno strato omogeneo di spessore H; nei casi reali di terreno stratificato la precedente non è applicabile, ma assumendo valida l'ipotesi di Steinbrenner possiamo porre il cedimento nella forma:

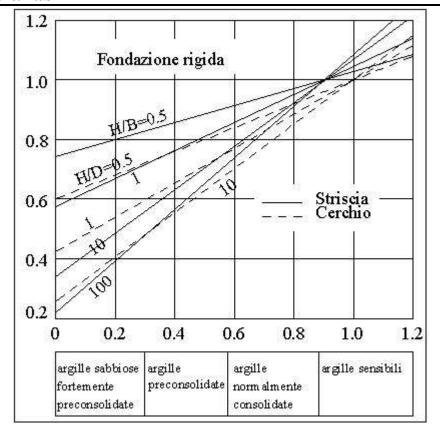
$$Wc = \sum\nolimits_{i=1}^{n} \beta(A_{i}, z_{i} + \triangle_{i}, B, L) Wed(z_{i} + \triangle_{i}) - \beta(A_{i}, z_{i}, B, L) Wed(z_{i})$$

dove:

la sommatoria è estesa ai soli strati a grana fina

A_i coefficiente di Skempton dello strato i^{mo}


 \mathbf{z}_{i} quota superiore dello strato in considerazione


 Δ_i spessore dello strato

 $\mathbf{W}_{ed}(\mathbf{zi})$ cedimento di uno strato ideale di spessore zi e modulo edometrico Eed_{i-1}

 $\mathbf{W}_{ed}(\mathbf{z}\mathbf{i}+\!\Delta\mathbf{i})$ cedimento di uno strato ideale di spessore $z\mathbf{i}+\!\Delta\mathbf{i}$ e modulo edometrico Eed_i

 β è letto dai diagrammi assumendo come spessore dello strato zi ovvero zi $+\Delta i$

Per gli strati a grana grossa si assume che il cedimento sia dato dalla espressione:

$$\triangle w_i = \sum_j \frac{\triangle \sigma_j}{E_{ed\,i}} \triangle z_j$$

nella quale la somma è estesa al numero di intervalli in cui si divide lo strato i e il cedimento totale degli strati a grana grossa sia:

$$Wg = \sum_{i} \triangle w_{i}$$

nella quale la somma è estesa a tutti gli strati a grana grossa.

Platea 1-2

Dati della fondazione rettangolare

Falda assente

В	10.80	[m]
L	15.70	[m]
eb	0.08	[m]
el	0.17	[m]
D	0.50	[m]
3	0.00	[°]
ω	0.00	[°]
ϕ	30.00	[°]
c	0.10	[kg/cmq]
G	23.51	[kg/cmq]
γ_1	1.80	[t/mc]
γ	1.80	[t/mc]
Fv	281876	[kg]
Fh	272	[kg]

Carico limite

N_{q}	N _c	N _γ
18.401	30.140	22.400
$\alpha_{ m q}$	$\alpha_{ m c}$	α_{γ}
1.000	1.000	1.000
β_{q}	$\beta_{\rm c}$	β_{γ}
1.000	1.000	1.000
$\xi_{ m q}$	ξς	ξγ
0.999	0.999	0.999
ψ_{q}	$\psi_{\rm c}$	ψ_{γ}
0.648	0.615	0.648
$\zeta_{ m q}$	ζ _c 1.423	ζ_{γ}
1.400	1.423	0.723
zq	zc	zg
1.000	1.000	1.000
N' _q	N'c	N' _γ
16.681	26.351	10.483

```
Indice di rigidezza critico Ir_{crit} = 88.487
Indice di rigidezza
                    Ir = 33.354
V = 281876 \text{ [kg]}
H = 272 [kg]
eb = 0.08 [m]
el = 0.17 [m]
Qlim=16.681*0.09[kg/cmq]+26.351*0.10[kg/cmq]+10.483*1.80[t/mc]*10.64[m]/2=14.18[kg/cmq]
Qd = 6.16 [kg/cmq]
\eta_{vd} = 2.300
Hlim = 326254 [kg]
Hd = 296594 [kg]
\eta_{hd}\!\!=\!\!1.100
V=281876 [kg] <= Vd=10078093 [kg]
                                                   VERIFICATO
                                          VERIFICATO
H=272 [kg] <= Hd=296594 [kg]
```

La fondazione è considerata infinitamente <u>rigida</u> rispetto al terreno.Il volume di terreno influenzato dalla costruzione è tale che il substrato rigido non influenza il comportamento della fondazione, pertanto l'ultimo strato viene esteso fino alla profondità per la quale sono significativi gli incrementi di tensione indotti dai carichi

N°	H[m]	Eed[kg/cmq]	γ[t/mc]	Imp.
1	10.00	93.91	1.80	No

Profondità fondazione Df = 0.50 [m]

Carico netto $q_{\text{eff}}\!\!=\!\!0.08[\text{kg/cmq}]$

Cedimento Immediato (fine) W0f=0[mm]
Cedimento Immediato (grossa) W0g=11[mm]
Cedimento di consolidazione(fine) Wc=0[mm]

Cedimento totale Wt=11[mm]

Platea 1-(12+13)-II-1

Dati della fondazione rettangolare

Falda assente

В	10.80	[m]
L	15.70	[m]
eb	0.21	[m]
el	0.12	[m]
D	0.50	[m]
3	0.00	[°]
ω	0.00	[°]
ϕ	30.00	[°]
c	0.10	[kg/cmq]
G	23.51	[kg/cmq]
γ_1	1.80	[t/mc]
γ	1.80	[t/mc]
Fv	202192	[kg]
Fh	6792	[kg]

Carico limite

N_q	N_c	N_{γ}
18.401	30.140	22.400
α_{q}	$\alpha_{ m c}$	α_{γ}
1.000	1.000	1.000
β_{q}	$\beta_{ m c}$	β_{γ}
1.000	1.000	1.000
ξq	ξο	ξ_{γ}
0.977	0.976	0.964
ψ_{q}	ψ_{c}	ψ_{γ}
0.649	0.616	0.649
$\zeta_{ m q}$	$\zeta_{\rm c}$	ζ_{γ}
1.388	1.410	0.731
zq	zc	zg
1.000	1.000	0.947
N' _q	N'c	N' _γ
16.196	25.547	9.701

```
Coefficiente sismico Kh (effetto cinematico) = 0.066
```

Indice di rigidezza critico $Ir_{crit} = 89.949$

Indice di rigidezza Ir = 33.995

V = 202192 [kg]

H = 6792 [kg]

eb = 0.21 [m]

el = 0.12 [m]

Qlim=16.196*0.09[kg/cmq]+25.547*0.10[kg/cmq]+9.701*1.80[t/mc]*10.39[m]/2=13.08[kg/cmq]

Qd = 5.69 [kg/cmq]

 $\eta_{vd} = 2.300$

Hlim = 277357 [kg]

Hd = 252143 [kg]

 $\eta_{hd}\!\!=\!\!1.100$

V=202192 [kg] <= Vd=9134165 [kg]

 $H=6792 [kg] \le Hd=252143 [kg]$

VERIFICATO VERIFICATO

La fondazione è considerata infinitamente <u>rigida</u> rispetto al terreno. Il volume di terreno influenzato dalla costruzione è tale che il substrato rigido non influenza il comportamento della fondazione, pertanto l'ultimo strato viene esteso fino alla profondità per la quale sono significativi gli incrementi di tensione indotti dai carichi

N°	H[m]	Eed[kg/cmq]	γ[t/mc]	Imp.
1	10.00	93.91	1.80	No

Profondità fondazione Df = 0.50 [m]

Carico netto q_{eff} =0.03[kg/cmq]

Rienilogo risultati del calcolo

Kiepiio,	iepilogo risultati del calcolo									
Elm.	Cmb	V [kg]	Vd [kg]	CsV	H [kg]	Hd [kg]	CsH	Qd [kg/cmq]	qe [kg/cmq	w [mm]
1	2	281876	10078093	82.23	272	296594	>100	6.16	0.08	11
	3	281875	10090301	82.33	180	296664	>100	6.17	0.08	11
	4	276798	10080963	83.77	544	294140	>100	6.16	0.07	11
	5	276798	10098558	83.91	328	294212	>100	6.16	0.07	11
	6	271893	10140300	85.78	349	292160	>100	6.17	0.07	10
	7	271894	10128966	85.68	272	292038	>100	6.17	0.07	10
	8	271893	10141598	85.79	180	292111	>100	6.17	0.07	10
	9	271894	10128966	85.68	272	292038	>100	6.17	0.07	10
	10	181228	10386594	>100	541	247965	>100	6.18	0.02	2
	11	181228	10391921	>100	0	247779	>100	6.19	0.02	2
	(12+13)-I-1	202130	9638640	>100	6507	258191	43.65	5.76	0.03	4
	(12+13)-I-3	202184	9353308	>100	6507	253510	42.86	5.77	0.03	4
	(12+13)-II-1	202192	9134165	>100	6792	252143	40.83	5.69	0.03	4
	(12+13)-II-2	202122	9428460	>100	6792	255358	41.35	5.74	0.03	4
	Minimi coeff.									
	sic.									
1	2			82.23						
1	(12+13)-II-1						40.83			

Wmax=11,Wmin=2

Verifica a scorrimento globale delle fondazione

Comb. = Combinazione di verifica

N[kg] = Sforzo normale

Hd[kg] = Azione orizzontale depurata dalle azioni assorbite da pali e plinti su pali

R[kg] = Resistenza allo scorrimento R=Area*c+N*tan(fi)

CS = R/Hd

CSd = Coefficiente di sicurezza di progetto

Area delle strutture di fondazione a contatto con il terreno A=169.5600 m²

Comb.	N	Hd	R	CS.	CSd	ver
	kg	kg	kg			
2	281876	272	332301	1222.31	1.10	Si
3	281875	180	332301	1846.02	1.10	Si
4	276798	544	329370	605.76	1.10	Si

Relazione Geotecnica

Georel Copyright ®

2002-2015 Soft.Lab

Comb.	N	Hd	R	CS.	CSd	ver
5	276798	328	329369	1005.38	1.10	Si
6	271893	349	326538	935.90	1.10	Si
7	271894	272	326538	1201.11	1.10	Si
8	271893	180	326538	1814.00	1.10	Si
9	271894	272	326538	1201.11	1.10	Si
10	181228	541	274192	506.98	1.10	Si
11	181228	0	274192		1.10	Si
(12+13)-I-1	202130	6507	286260	43.99	1.10	Si
(12+13)-I-3	202184	6507	286291	44.00	1.10	Si
(12+13)-II-1	202192	6792	286296	42.15	1.10	Si
(12+13)-II-2	202122	6792	286255	42.14	1.10	Si

Comune di Santa Maria del Cedro

Provincia di Cosenza

<u>PROGETTO:</u> REALIZZAZIONE NUVO EDIFICIO PUBBLICO, DESTINATO A SCUOLA CON STRUTTURA IN LEGNO NEL COMUNE DI SANTA MARIA DEL CEDRO (CS). CLASSE D'USO DELLA COSTRUZIONE 3.

<u>PRATICA:</u> REALIZZAZIONE DEGLI INTERVENTI DIRETTI ALL'AMPLIAMENTO DELLA SCUOLA ELEMENTARE UBICATA IN VIA ORSOMARSO DEL COMUNE DI SANTA MARIA DEL CEDRO FRAZIONE MARCELLINA.

Il Committente

Comune di Santa Maria del Cedro

via Nazionale n.16 87020, Santa Maria del Cedro (CS) Tel. 0.985/5727 - C.F. 00433700788

Il Responsabile del Servizio

Dott. Ing. Giuseppe Durante

I Progettisti e DD.LL.

Dott. Geom. Giuseppe Riccetti

Geom. Carmine Covucci

Data: novembre 2016

Tavola:
Integrazione
а

Scala :

Elaborato:

Integrazione alla Relazione sulle Fondazioni

Aggiornamenti:

RELAZIONE GEOTECNICA

Comune:	Santa Maria del cedro
Titolo del progetto:	REALIZZAZIONE NUVO EDIFICIO PUBBLICO, DESTINATO A SCUOLA CON STRUTTURA IN LEGNO NEL COMUNE DI SANTA MARIA DEL CEDRO (CS). CLASSE D'USO DELLA COSTRUZIONE 3
Committente:	Amministrazione Comunale
Opera:	
Data:	Progettisti: Dott. Geom.Giuseppe Riccetti Geom. Carmine Covucci

Normativa di riferimento

- Legge nr. 1086 del 05/11/1971.

Norme per la disciplina delle opere in conglomerato cementizio, normale e precompresso ed a struttura metallica.

- Legge nr. 64 del 02/02/1974.

Provvedimenti per le costruzioni con particolari prescrizioni per le zone sismiche.

- D.M. LL.PP. del 11/03/1988.

Norme tecniche riguardanti le indagini sui terreni e sulle rocce, la stabilità dei pendii naturali e delle scarpate, i criteri generali e le prescrizioni per la progettazione, l'esecuzione e il collaudo delle opere di sostegno delle terre e delle opere di fondazione.

- D.M. LL.PP. del 14/02/1992.

Norme tecniche per l'esecuzione delle opere in cemento armato normale e precompresso e per le strutture metalliche.

- D.M. 9 Gennaio 1996

Norme Tecniche per il calcolo, l' esecuzione ed il collaudo delle strutture in cemento armato normale e precompresso e per le strutture metalliche

- D.M. 16 Gennaio 1996

Norme Tecniche relative ai 'Criteri generali per la verifica di sicurezza delle costruzioni e dei carichi e sovraccarichi'

- D.M. 16 Gennaio 1996

Norme Tecniche per le costruzioni in zone sismiche

- Circolare Ministero LL.PP. 15 Ottobre 1996 N. 252 AA.GG./S.T.C.

Istruzioni per l'applicazione delle Norme Tecniche di cui al D.M. 9 Gennaio 1996

- Circolare Ministero LL.PP. 10 Aprile 1997 N. 65/AA.GG.

Istruzioni per l'applicazione delle Norme Tecniche per le costruzioni in zone sismiche di cui al D.M. 16 Gennaio 1996.

- Norme Tecniche per le costruzioni D.M.14/01/2008.

Istruzioni per l'applicazione delle Norme Tecniche per le costruzioni in zone sismiche di cui al D.M. 14 Gennaio 2008

Modello per il calcolo del carico limite

Il terreno di fondazione è considerato costituito da due strati uno superiore ed uno inferiore al piano di posa della fondazione. La presenza della falda è presa in considerazione in base alla sua profondità dal piano campagna. Per la verifica a carico limite si adotta l'approccio 2 con una unica combinazione di carico A1+M1+R3, in cui i coefficienti parziali di sicurezza per le resistenze sono unitari ed il coefficiente di sicurezza globale è 2.3 per il carico limite verticale e 1.1 per il coefficiente di sicurezza a carico orizzontale. L'effetto del sisma è portato in conto considerando che la forza applicata a causa del sisma non è nè centrata nè verticale cio' comporta l'applicazione di fattori correttivi perl'inclinazione e una riduzione delle dimensioni della fondazione in funzione dell'eccentricità. Di seguito si riporta il calcolo per le combinazioni più gravose; in calce è riportato un riepilogo per tutte le combinazioni.

Carico limite

Il calcolo del carico limite è valutato secondo la formula di Terzaghi-Meyerof

$$Q_{\text{lim}} = q \cdot Nq \cdot \zeta q \cdot \xi q \cdot \alpha q \cdot \beta q \cdot \psi q + c \cdot Nc \cdot \zeta c \cdot \xi c \cdot \alpha c \cdot \beta c \cdot \psi c + \gamma \cdot N\gamma \cdot \frac{B}{2} \cdot \zeta \gamma \cdot \xi \gamma \cdot \alpha \gamma \cdot \beta \gamma \cdot \psi \gamma$$

dove:

 N_q,N_c,N_γ =Coefficienti di Terzaghi - Meyerof per la striscia indefinita

 ζ_q , ζ_c , ζ_γ = coefficienti correttivi di forma funzione del rapporto B/L

 $\xi_q,\,\xi_c,\,\xi_\gamma$ = coefficienti correttivi di inclinazione del carico dipendente da H/V

 α_q , α_c , α_r = coefficienti correttivi di inclinazione del piano di posa

 β_{q} , β_{c} , β_{v} = coefficienti correttivi di inclinazione del piano campagna

zq,zc,zg= coefficienti sismimici per considerare l'effetto cinematico, considerati solo in presenza di sisma

 ψ_q , ψ_c , ψ_r = coefficienti correttivi di punzonamento dipendenti da un indice di rigidezza del terreno, in particolare detto Ir l'indice di rigidezza del terreno (secondo la teoria di Vesic dipendente dal modulo tangenziale G=0.5 E/(1+v) del terreno, dalla coesione c, dalla tensione effettiva alla profondità B/2 sotto il piano di posa, dall'angolo di attrito del terreno di fondazione) ed Ircrit l'indice di rigidezza critico (dipendente dall' angolo di attrito del terreno e dal rapporto B/L) risulta che i coefficienti di punzonamento sono uguali alla unità quando Ir>=Ircrit, mentre sono minori dell' unità quando Ir<Ircrit.

Oltre a queste correzioni un' altra deriva dalla eccentricità del carico riducendo le dimensioni della fondazione in modo che il carico risulti centrato rispetto alla fondazione ridotta, dette 'e_b' ed 'e_l' le eccentrità del carico nella direzione di B ed L il carico limite si calcola per una fondazione di dimensioni ridotte B' =B-2e_b e L' =L-2e_l

Altra correzione deriva dalla presenza della falda inserendo i pesi del terreno immerso nel primo e terzo termine, in particolare, detta Hf la profondità della falda e D la profondità del piano di posa,si ha:

per Hf<D si valuta la pressione effettiva sul piano di posa considerando che parte del terreno superiore è immerso, mentre nel terzo termine si userà il peso immerso

per Hf>D ed Hf<D+B il peso del terreno del terzo termine si interpola ta i valori immerso e secco secondo la formula: $\gamma = \gamma' + (\gamma - \gamma') *D/B$

per Hf>D+B la falda è trascurata.

I coefficienti di Terzaghi - Meyerof per la striscia ed i coefficienti correttivi sono dati dalle relazioni:

$$N_q = \frac{1 + \sin(\varphi)}{1 - \sin(\varphi)} e^{\pi \tan(\varphi)}$$

$$N_c = (N_q - 1)\cot(\phi)$$

Il coefficiente N_{γ} non è suscettibile di una espressione in forma analitica chiusa, ed è stato calcolato per via numerica da diversi Autori. I valori del coefficiente sono riportati nella seguente tabella in funzione dell'angolo ϕ :

φ°	0	1	2	3	4	5	6	7	8
N_{γ}	0	0.07	0.15	0.24	0.34	0.45	0.57	0.71	0.86
ϕ°	9	10	11	12	13	14	15	16	17
N_{γ}	1.03	1.22	1.44	1.69	1.97	2.29	2.65	3.06	3.53
ϕ°	18	19	20	21	22	23	24	25	26
N_{γ}	4.07	4.68	5.39	6.2	7.13	8.2	9.44	10.88	12.54
ϕ°	27	28	29	30	31	32	33	34	35
N_{γ}	14.47	16.72	19.34	22.4	25.99	30.22	35.19	41.06	48.03
φ°	36	37	38	39	40	41	42	43	44
N_{γ}	56.31	66.19	78.03	92.25	109.41	130.22	155.55	186.54	224.64
φ°	45	46	47	48	49	50			
N_{γ}	271.76	330.75	403.67	496.01	613.16	762.89			

$$\begin{split} &\zeta_q = 1 + \frac{B}{L} \tan(\varphi) \\ &\zeta_c = 1 + \frac{B}{L} \frac{N_q}{N_c} \\ &\zeta_r = 1 - 0.4 \frac{B}{L} \\ &m = \frac{2 + \frac{B}{L}}{1 + \frac{B}{L}} \\ &\xi_q = \left[1 - \frac{H \tan(\phi)}{V \tan(\varphi) + BLc}\right]^m \\ &\xi_c = \xi_q - \frac{1 - \xi_q}{N_c \cdot \tan(\varphi)} \\ &\xi_r = \left[1 - \frac{H \tan(\phi)}{V \tan(\varphi) + BLc}\right]^{m+1} \end{split}$$

$$\begin{split} &\psi_{q} = \exp\left(0.6\frac{B}{L} - 4.4)\tan(\phi) + \frac{3.07\sin(\phi)\log_{10}(2I_{r})}{1 + \sin(\phi)}\right) \\ &\psi_{c} = \psi_{q} - \frac{1 - \psi_{q}}{N_{q}\tan(\phi)} \sec \phi \neq 0; \quad \psi_{c} = 0.32 + 0.12\frac{B}{L} + 0.6\log_{10}(I_{r}) \sec \phi = 0 \\ &\psi_{r} = \psi_{q} \\ &\alpha_{q} = \alpha_{r} = (1 - \varepsilon\tan(\phi))^{2} \\ &\alpha_{c} = \alpha_{q} - \frac{1 - \alpha_{q}}{N_{c}\tan(\phi)} \\ &\beta_{q} = (1 - \tan(\phi))^{2}\cos(\phi) \\ &\beta_{c} = \beta_{\lambda} - \frac{q - \beta_{\lambda}}{N_{c}\tan(\phi)} \\ &\beta_{c} = \beta_{\lambda} - \frac{q - \beta_{\lambda}}{N_{c}\tan(\phi)} \\ &\varepsilon < \pi/4; \quad \phi < \pi/4; \quad \phi < \phi \\ &zq = zc = 1 \\ &zg = (1 - kh/\tan(\phi))^{0.45} \\ &kh = \beta \frac{a_{\max}}{g} \cdot \left(vedi \cdot NT - 7.11.3\right) \end{split}$$

Simbologia carico limite fondazione rettangolare:

В	Base
L	Lunghezza
eb	Eccentricità secondo B
el	Eccentricità secondo L
D	Profondità del piano di posa
3	Inclinazione del piano di posa
ω	Inclinazione del piano campagna
ϕ	Angolo di attrito del terreno di fondazione
c	Coesione del terreno di fondazione
G	Modulo tangenziale del terreno di fondazione
γ_1	Peso specifico terreno superiore
γ	Peso specifico terreno di fondazione
γ _{1Sat}	Peso specifico terreno saturo superiore
γ_{Sat}	Peso specifico terreno saturo di fondazione
Hf	Profondità della falda
W0	Peso specifico acqua
Fv	Componente ortogonale dell'azione sulla fondazione
Fh	Componente tangenziale dell'azione sulla fondazione

Modello terreno misto per il calcolo dei cedimenti:

Il terreno è modellato come sequenza di strati che possono essere ad elevata permeabilità o praticamente impermeabili, nel seguito queste due tipologie di terreno verranno indicate con terreni a **Grana grossa** e con terreni a **Grana fina**. Per tale modello si assume che il cedimento complessivo sia la somma di un cedimento immediato ed uno di consolidazione, quest'ultimo dovuto alla dissipazione delle sovra-pressioni neutre che nascono per effetto dell'applicazione dei carichi alla fondazione; data la natura dei terreni questa aliquota di cedimento avviene solo negli strati a bassa permeabilità. Il cedimento immediato invece è somma di due contributi: il primo dovuto ai cedimenti per effetto della sola variazione di

forma nei terreni a grana fina, la seconda dovuta ai cedimenti per effetto della variazione di forma e volume nei terreni a grana grossa, risulta quindi che per i terreni a grana grossa è assente il cedimento di consolidazione. La ipotesi che si pone alla base del metodo è che i terreni a grana grossa possano drenare verso l'esterno, infatti nel caso contrario, (ad esempio nel caso che uno strato sia confinato entro un volume chiuso di terreno a grana fina) le condizioni idrauliche al contorno degli strati a grana grossa sono determinate dalla applicazione del carico alla fondazione ed in particolare, poichè l'acqua non può drenare verso l'esterno il terreno si comporterebbe come un mezzo elastico con modulo elastico pari a quello dell'acqua. La deformabilità degli strati è individuata attraverso il modulo edometrico ed il modulo elastico non drenato per gli strati di terreno a grana fina. Il cedimento è calcolato in base alla teoria di Skempton e Bjerrum per gli strati a grana fina, e secondo la teoria elastica per i gli strati a grana grossa. Il cedimento di consolidazione è valutato in funzione del cedimento edometrico secondo la relazione Wc=βWed dove β è fornito dai diagrammi seguenti espressi in funzione del coefficiente 'A' di Skempton, del rapporto H/B per la striscia ovvero di H/D per il quadrato o cerchio, per valori intermedi si interpola linearmente.

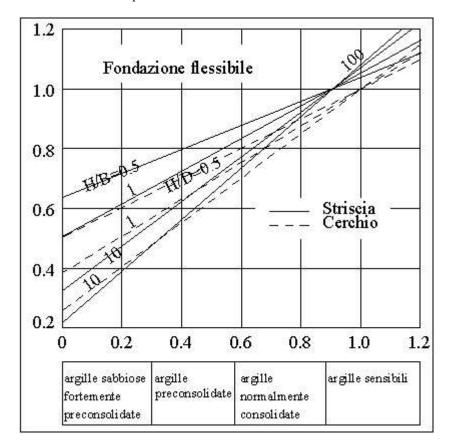
La precedente relazione è applicabile ad uno strato omogeneo di spessore H; nei casi reali di terreno stratificato la precedente non è applicabile, ma assumendo valida l'ipotesi di Steinbrenner possiamo porre il cedimento nella forma:

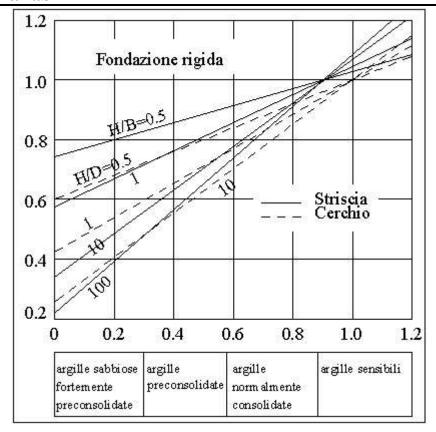
$$\textit{Wc} = \sum\nolimits_{i=1}^{n} \beta(\textit{A}_{i}, \textit{z}_{i} + \Delta_{i}, \textit{B}, \textit{L}) \textit{Wed}\left(\textit{z}_{i} + \Delta_{i}\right) - \beta(\textit{A}_{i}, \textit{z}_{i}, \textit{B}, \textit{L}) \textit{Wed}\left(\textit{z}_{i}\right)$$

dove:

la sommatoria è estesa ai soli strati a grana fina

A_i coefficiente di Skempton dello strato i^{mo}


z_i quota superiore dello strato in considerazione


 Δ_i spessore dello strato

W_{ed}(zi) cedimento di uno strato ideale di spessore zi e modulo edometrico Eed_{i-1}

 $W_{ed}(zi+\Delta i)$ cedimento di uno strato ideale di spessore $zi+\Delta i$ e modulo edometrico Eed_i

β è letto dai diagrammi assumendo come spessore dello strato zi ovvero zi+Δi

Per gli strati a grana grossa si assume che il cedimento sia dato dalla espressione:

$$\triangle w_i = \sum_{j} \frac{\triangle \sigma_j}{E_{ed\,j}} \triangle z_j$$

nella quale la somma è estesa al numero di intervalli in cui si divide lo strato i e il cedimento totale degli strati a grana grossa sia:

$$Wg = \sum_i \triangle w_i$$

nella quale la somma è estesa a tutti gli strati a grana grossa.

Platea 1-2

Dati della fondazione rettangolare

Falda assente

В	10.80	[m]
L	15.70	[m]
eb	0.08	[m]
el	0.17	[m]
D	0.50	[m]
3	0.00	[°]
ω	0.00	[°]
ϕ	30.00	[°]
c	0.10	[kg/cmq]
G	23.51	[kg/cmq]
γ_1	1.80	[t/mc]
γ	1.80	[t/mc]
Fv	281875	[kg]
Fh	272	[kg]

Carico limite

$N_{\mathfrak{q}}$	N _c	N_{γ}
18.401	30.140	22.400
α_{q}	$\alpha_{\rm c}$	α_{γ}
1.000	1.000	1.000
β_{q}	β_{c}	β_{γ}
1.000	1.000	1.000
ξq	ξ _c 0.999	ξ_{γ}
0.999	0.999	0.999
ψ_{q}	$\Psi_{\rm c}$	Ψγ
0.648	Ψ _c 0.615	$\frac{\psi_{\gamma}}{0.648}$
ζq		ζγ
1.400	ζ _c 1.423	0.723
zq	zc	zg
1.000	1.000	1.000
N' _q	N'c	N' _γ
16.681	26.351	10.483

```
Indice di rigidezza critico Ir_{crit} = 88.487
Indice di rigidezza
                    Ir = 33.354
V = 281875 \text{ [kg]}
H = 272 [kg]
eb = 0.08 [m]
el = 0.17 [m]
Qlim=16.681*0.09[kg/cmq]+26.351*0.10[kg/cmq]+10.483*1.80[t/mc]*10.64[m]/2=14.18[kg/cmq]
Qd = 6.16 [kg/cmq]
\eta_{vd} = 2.300
Hlim = 326253 [kg]
Hd = 296594 [kg]
\eta_{hd}\!\!=\!\!1.100
V=281875 [kg] <= Vd=10078096 [kg]
                                                   VERIFICATO
H=272 [kg] <= Hd=296594 [kg]
                                          VERIFICATO
```

La fondazione è considerata infinitamente <u>rigida</u> rispetto al terreno.Il volume di terreno influenzato dalla costruzione è tale che il substrato rigido non influenza il comportamento della fondazione, pertanto l'ultimo strato viene esteso fino alla profondità per la quale sono significativi gli incrementi di tensione indotti dai carichi

N°	H[m]	Eed[kg/cmq]	γ[t/mc]	Imp.
1	10.00	93.91	1.80	No

Profondità fondazione Df = 0.50 [m]

 $\begin{array}{ccc} \text{Carico netto} & & & & & & & \\ \textbf{Capper femore formula} & & & & & & \\ \textbf{Cedimento Immediato (fine)} & & & & & & \\ \textbf{W0f=0[mm]} & & & & & \\ \end{array}$

Cedimento Immediato (fine) W0f=0[mm]
Cedimento Immediato (grossa) W0g=11[mm]
Cedimento di consolidazione(fine) Wc=0[mm]

Cedimento totale Wt=11[mm]

Platea 1-(12+13)-II-1

Dati della fondazione rettangolare

Falda assente

В	10.80	[m]
L	15.70	[m]
eb	0.21	[m]
el	0.12	[m]
D	0.50	[m]
3	0.00	[°]
ω	0.00	[°]
ϕ	30.00	[°]
c	0.10	[kg/cmq]
G	23.51	[kg/cmq]
γ_1	1.80	[t/mc]
γ	1.80	[t/mc]
Fv	202193	[kg]
Fh	6795	[kg]

Carico limite

$N_{\mathfrak{q}}$	N _c	N_{γ}
18.401	30.140	22.400
α_{q}	$\alpha_{\rm c}$	α_{γ}
1.000	1.000	1.000
β_{q}	β_{c}	β_{γ}
1.000	1.000	1.000
$\xi_{ m q}$	ξ _c 0.976	ξ_{γ}
0.977	0.976	0.964
ψ_{q}	$\Psi_{\rm c}$	Ψγ
0.649	Ψ _c 0.616	Ψ _γ 0.649
ζq		ζγ
1.388	$\frac{\zeta_{\rm c}}{1.410}$	0.731
zq	zc	zg
1.000	1.000	0.947
N' _q	N'c	N' _γ
16.196	25.547	9.701

```
Coefficiente sismico Kh (effetto cinematico) = 0.066
```

Indice di rigidezza critico $Ir_{crit} = 89.950$

Indice di rigidezza Ir = 33.995

V = 202193 [kg]

H = 6795 [kg]

eb = 0.21 [m]

el = 0.12 [m]

 $Qlim=16.\overline{196*0.09[kg/cmq]}+25.547*0.10[kg/cmq]+9.701*1.80[t/mc]*10.39[m]/2=13.08[kg/cmq]$

Qd = 5.69 [kg/cmq]

 $\eta_{vd} = 2.300$

Hlim = 277355 [kg]

Hd = 252141 [kg]

 $\eta_{hd}\!\!=\!\!1.100$

V=202193 [kg] <= Vd=9133865 [kg]

H=6795 [kg] <= Hd=252141 [kg]

VERIFICATO VERIFICATO

La fondazione è considerata infinitamente <u>rigida</u> rispetto al terreno.Il volume di terreno influenzato dalla costruzione è tale che il substrato rigido non influenza il comportamento della fondazione, pertanto l'ultimo strato viene esteso fino alla profondità per la quale sono significativi gli incrementi di tensione indotti dai carichi

N°	H[m]	Eed[kg/cmq]	γ[t/mc]	Imp.
1	10.00	93.91	1.80	No

Profondità fondazione Df = 0.50 [m]

Carico netto q_{eff} =0.03[kg/cmq]

Cedimento Immediato (fine) W0f=0[mm]
Cedimento Immediato (grossa) W0g=4[mm]
Cedimento di consolidazione(fine) Wc=0[mm]

Cedimento totale Wt=4[mm]

Riepilogo risultati del calcolo

	So rismini nei eni							Qd	qe	
Elm.	Cmb	V [kg]	Vd [kg]	CsV	H [kg]	Hd [kg]	CsH	[kg/cmq	[kg/cmq	w [mm]
]]	
1	2	281875	10078096	82.23	272	296594	>100	6.16	0.08	11
	3	281875	10090304	82.33	180	296664	>100	6.17	0.08	11
	4	276798	10080966	83.77	544	294140	>100	6.16	0.07	11
	5	276798	10098560	83.91	328	294212	>100	6.16	0.07	11
	6	271893	10140302	85.78	349	292159	>100	6.17	0.07	10
	7	271893	10128968	85.68	272	292038	>100	6.17	0.07	10
	8	271893	10141601	85.79	180	292111	>100	6.17	0.07	10
	9	271893	10128968	85.68	272	292038	>100	6.17	0.07	10
	10	181228	10386595	>100	541	247965	>100	6.18	0.02	2
	11	181228	10391922	>100	0	247779	>100	6.19	0.02	2
	(12+13)-I-1	202129	9638525	>100	6508	258190	43.64	5.76	0.03	4
	(12+13)-I-3	202184	9353271	>100	6508	253510	42.85	5.77	0.03	4
	(12+13)-II-1	202193	9133865	>100	6795	252141	40.82	5.69	0.03	4
	(12+13)-II-2	202120	9428172	>100	6795	255355	41.34	5.74	0.03	4
	Minimi coeff.									
	sic.									
1	2			82.23						
1	(12+13)-II-1						40.82			

Wmax=11,Wmin=2

Verifica a scorrimento globale delle fondazione

Comb. = Combinazione di verifica

N[kg] = Sforzo normale

Hd[kg] = Azione orizzontale depurata dalle azioni assorbite da pali e plinti su pali

R[kg] = Resistenza allo scorrimento R=Area*c+N*tan(fi)

CS = R/Hd

CSd = Coefficiente di sicurezza di progetto

Area delle strutture di fondazione a contatto con il terreno A=169.5600 m²

Comb.	N	Hd	R	CS.	CSd	ver
	kg	kg	kg			
2	281875	272	332301	1222.31	1.10	Si
3	281875	180	332300	1846.01	1.10	Si
4	276798	544	329369	605.76	1.10	Si
5	276798	328	329369	1005.38	1.10	Si

Comb.	N	Hd	R	CS.	CSd	ver
6	271893	349	326537	935.90	1.10	Si
7	271893	272	326538	1201.11	1.10	Si
8	271893	180	326538	1814.00	1.10	Si
9	271893	272	326538	1201.11	1.10	Si
10	181228	541	274192	506.98	1.10	Si
11	181228	0	274192		1.10	Si
(12+13)-I-1	202129	6508	286259	43.99	1.10	Si
(12+13)-I-3	202184	6508	286291	43.99	1.10	Si
(12+13)-II-1	202193	6795	286296	42.14	1.10	Si
(12+13)-II-2	202120	6795	286254	42.13	1.10	Si

Considerando la tabella seguente, i valori dei cedimenti sono compatibili con le prestazioni della struttura in elevazione

Tabella 16.5 - Valori ammissibili di alcuni parametri di deformazione delle strutture secondo Sowers (1962)

Tipo di movimento	Fattore di limitazione	Valore ammissibile
Cedimento massimo ρ _{max} (cm)	Collegamento a reti di servizi	15÷30
	Accessibilità	30÷60
	Probabilità di cedimenti differenziali in:	
	a) murature portanti	2,5÷5
	b) strutture intelaiate	5÷10
	c) ciminiere, silos	7,5÷30

Comune di Santa Maria del Cedro

Provincia di Cosenza

<u>PROGETTO:</u> REALIZZAZIONE NUVO EDIFICIO PUBBLICO, DESTINATO A SCUOLA CON STRUTTURA IN LEGNO NEL COMUNE DI SANTA MARIA DEL CEDRO (CS). CLASSE D'USO DELLA COSTRUZIONE 3.

<u>PRATICA:</u> REALIZZAZIONE DEGLI INTERVENTI DIRETTI ALL'AMPLIAMENTO DELLA SCUOLA ELEMENTARE UBICATA IN VIA ORSOMARSO DEL COMUNE DI SANTA MARIA DEL CEDRO FRAZIONE MARCELLINA.

II Committente

Comune di Santa Maria del Cedro

via Nazionale n.16 87020, Santa Maria del Cedro (CS) Tel. 0.985/5727 - C.F. 00433700788

Il Responsabile del Servizio

Dott. Ing. Giuseppe Durante

I Progettisti e DD.LL.

Dott. Geom. Giuseppe Riccetti

Geom. Carmine Covucci

Data: novembre 2016

Tavola : Elaborato :

D2 Relazione sulle caratteristiche dei Materiali

Scala: Visti e Pareri:

Aggiornamenti:

RELAZIONE SUI MATERIALI

Comune:	Santa Maria del cedro
Titolo del progetto:	
Committente:	
Opera:	
Data: 27/11/2016	Progettista:

I materiali impiegati per la costruzione sono:

inserire l'elenco dei materiali per esempio

cemento armato

acciaio

legno

CEMENTO ARMATO

LEGANTI: I leganti impiegati nell'opera in progetto, sono quelli previsti sono quelli previsti dalle disposizioni vigenti in materia (Legge 26-05-1965 e norme armonizzate della serie EN 197), dotati di attestato di conformità ai sensi delle norme EN 197-1 ed EN 197-2. In presenza di ambienti chimicamente aggressivi si fa riferimento ai cementi previsti dalle norme UNI 9156 (cementi resistenti ai solfati) e UNI 9606 (cementi resistenti al dilavamento della calce).

AGGREGATI: La sabbia deve essere viva, con grani assortiti in grossezza da 0 a 3 mm, non proveniente da rocce in decomposizione, scricchiolante alla mano, pulita, priva di materie organiche, melmose, terrose e di salsedine. La ghiaia deve contenere elementi assortiti, di dimensioni fino a 15 mm, resistenti e non gelivi, non friabili, scevri di sostanze estranee, terra e salsedine. Le ghiaie sporche vanno accuratamente lavate. Anche il pietrisco proveniente da rocce compatte, non gessose né gelive, dovrà essere privo di impurità od elementi in decomposizione.

AGGIUNTE

ADDITIVI

ACQUA DI IMPASTO: L'acqua da utilizzare per gli impasti dovrà essere limpida, priva di sali in percentuale dannosa e non aggressiva.

CARATTERISTICHE RESISTENTI DEL CONGLOMERATO CEMENTIZIO

I parametri relativi ale caratteristiche reistsenti sono riportati di seguito, secondo la notazione in tabella.

P arametro	D escrizione	<i>s</i> imbolo	C orrelazioni
Resistenza caratteristica cubica a compressione	valore frattile 5% della distribuzione di resistenza determinata su provini cubici confezionati e conservati secondo la norma EN12390-2, e sottoposti a prova di compressione uniassiale dopo 28 giorni, secondo la norma EN12390-3.	R ck	
Resistenza caratteristica cilindrica a compressione	valore frattile 5% della distribuzione di resistenza determinata su provini cilindrici, di diametro 150mm ed altezza 300mm.	f čk	fck=0.83 Rck
Resistenza di calcolo cilindrica a compressione		f èd	fck/yc
Resistenza a trazione	R esistenza media a trazione semplice (assiale)	f ctm	
Resistenza caratteristica		f ctk	fctk = 0.7 f ctm
Resistenza a trazione per flessione		f cfk	$f_{cfk} = 1,2f_{ctk}$
T.A. in esercizio combinazione rara			
T.A. in esercizio combinazione frequente			
T.A. in esercizio combinazione quasi perm.			
Modulo elastico	Viene come funzione della resistenza a rottura media su provino cubico (Rcm)	E c	$Ec = 22000 \cdot fcm^{03}$ $con fcm=fck+8 (N/mmq)$
Coefficiente di Poisson	viene adottato un valore maggiore di zero (calcestruzzo fessurato) e minore di 0.2 (non fessurato)	VC	<i>0</i> < <i>v</i> c≤ 0.2
Coefficiente di dilatazione termica	In fase di progettazione viene assunto il valore riportato nella presente tabella	α c	

Parti in calcestruzzo armato			
Classe calcestruzzo		Cls C25/30	
Resistenza cubica Rck	DaN/cmq	300.000	
Resistenza di calcolo fcd	DaN/cmq	141.100	
Resistenza a trazione di calcolofctd	DaN/cmq	11.938	
Resistenza cilindrica fck	DaN/cmq	249.000	
Resistenza a trazione mediafctm	DaN/cmq	25.581	

Classe acciaio		Acciaio B450C
Resistenza allo snervamento fyk	DaN/cmq	>=4500.000
Resistenza alla rottura ftk	DaN/cmq	>=5400.000
Parti in legno		
Legno_Pressofl		
fyd	kN/m^2	14000.0
Tipologia legno	Lamellare	
Classe di resistenza	GL24h	

DOSATURE DEI MATERIALI

La dosatura dei materiali è orientativamente la seguente per m³ d'impasto, salvo la preparazione dei provini:

sabbia 0.4 m³

ghiaia 0.8 m³

acqua 120 litri

cemento tipo 425 3.5 g/m³

ACCIAI

Le armature metalliche saranno costituite da acciaio saldabile e qualificato secondo le procedure di cui ai punti 11.3.1.2 11.3.2 del D.M. 2008:

Tipo acciaio B450C

fv nom = 450 N/mmq – Tensione nominale di snervamento

ft nom = 540 N/mmq – Tensione nominale di rottura

fyk =450 N/mmq - Tensione caratteristica di snervamento

ftk =540 N/mmq - Tensione caratteristica di rottura

t aderenza 2.6 N/mmq

All'atto della posa in opera gli acciai devono presentarsi privi di ossidazione, corrosione, difetti superficiali visibili e pieghe. E' tollerata una ossidazione che scompaia totalmente mediante sfregamento con un panno asciutto. Non è ammessa in cantiere alcuna operazione di raddrizzamento.

Il Progettista

Comune di Santa Maria del Cedro

Provincia di Cosenza

<u>PROGETTO:</u> REALIZZAZIONE NUVO EDIFICIO PUBBLICO, DESTINATO A SCUOLA CON STRUTTURA IN LEGNO NEL COMUNE DI SANTA MARIA DEL CEDRO (CS). CLASSE D'USO DELLA COSTRUZIONE 3.

<u>PRATICA:</u> REALIZZAZIONE DEGLI INTERVENTI DIRETTI ALL'AMPLIAMENTO DELLA SCUOLA ELEMENTARE UBICATA IN VIA ORSOMARSO DEL COMUNE DI SANTA MARIA DEL CEDRO FRAZIONE MARCELLINA.

II Committente

Comune di Santa Maria del Cedro

via Nazionale n.16 87020, Santa Maria del Cedro (CS) Tel. 0.985/5727 - C.F. 00433700788

Il Responsabile del Servizio

Dott. Ing. Giuseppe Durante

I Progettisti e DD.LL.

Dott. Geom. Giuseppe Riccetti

Geom. Carmine Covucci

Data: novembre 2016

Tavola:
Integrazione
b

Scala:

Elaborato:

Integrazione alla Relazione sui Materiali in cui vengono indicati in dettaglio le caratteristiche di resistenza del legno

Visti e Pareri :

Aggiornamenti:

I materiali impiegati per la costruzione sono:

inserire l'elenco dei materiali per esempio

- cemento armato
- acciaio
- legno

CEMENTO ARMATO

- LEGANTI: I leganti impiegati nell'opera in progetto, sono quelli previsti sono quelli previsti dalle disposizioni vigenti in materia (Legge 26-05-1965 e norme armonizzate della serie EN 197), dotati di attestato di conformità ai sensi delle norme EN 197-1 ed EN 197-2. In presenza di ambienti chimicamente aggressivi si fa riferimento ai cementi previsti dalle norme UNI 9156 (cementi resistenti ai solfati) e UNI 9606 (cementi resistenti al dilavamento della calce).
- AGGREGATI: La sabbia deve essere viva, con grani assortiti in grossezza da 0 a 3 mm, non
 proveniente da rocce in decomposizione, scricchiolante alla mano, pulita, priva di materie
 organiche, melmose, terrose e di salsedine. La ghiaia deve contenere elementi assortiti, di
 dimensioni fino a 15 mm, resistenti e non gelivi, non friabili, scevri di sostanze estranee, terra
 e salsedine. Le ghiaie sporche vanno accuratamente lavate. Anche il pietrisco proveniente
 da rocce compatte, non gessose né gelive, dovrà essere privo di impurità od elementi in
 decomposizione.
- AGGIUNTE
- ADDITIVI
- **ACQUA DI IMPASTO:** L'acqua da utilizzare per gli impasti dovrà essere limpida, priva di sali in percentuale dannosa e non aggressiva.

• CARATTERISTICHE RESISTENTI DEL CONGLOMERATO CEMENTIZIO

I parametri relativi ale caratteristiche reistsenti sono riportati di seguito, secondo la notazione in tabella.

P arametro	D escrizione	<i>s</i> imbolo	C orrelazioni
Resistenza caratteristica	<i>v</i> alore frattile 5% della	R ck	
cubica a compressione	distribuzione di resistenza		
	determinata su provini cubici		
	confezionati e conservati		
	secondo la norma		
	EN12390-2, e sottoposti a		
	prova di compressione		
	uniassiale dopo 28 giorni,		
	secondo la norma		
	EN12390-3.		
Resistenza caratteristica	<i>v</i> alore frattile 5% della	f ck	f ck=0.83 R ck
cilindrica a compressione	distribuzione di resistenza		
	determinata su provini		
	cilindrici, di diametro 150mm		
	ed altezza 300mm.		
Resistenza di calcolo		f cd	fck/γc
cilindrica a compressione			
Resistenza a trazione	Resistenza media a trazione	f ctm	
	semplice (assiale)		
Resistenza caratteristica		f ctk	fctk = 0.7 f ctm
Resistenza a trazione per		f cfk	fcfk = 1,2 f ctk
flessione			
T.A. in esercizio			
combinazione rara			
T.A. in esercizio			
combinazione frequente			
T.A. in esercizio			
combinazione quasi perm.			
Modulo elastico	Viene come funzione della		
	resistenza a rottura media su	E c	$Ec = 22000 \cdot fcm^{03}$
	provino cubico (Rcm)		con fcm=fck+8 (N/mmq)
Coefficiente di Poisson	<i>v</i> iene adottato un valore		
	maggiore di zero	v c	<i>0</i> < <i>v</i> c≤ 0.2
	(calcestruzzo fessurato) e	. 0	
	minore di 0.2 (non fessurato)		
Coefficiente di dilatazione	<i>I</i> n fase di progettazione viene	α c	
termica	assunto il valore riportato		
	nella presente tabella		

Parti in calcestruzzo armato			
Classe calcestruzzo		Cls C25/30	
Resistenza cubica Rck	DaN/cmq	300.000	
Resistenza di calcolo fcd	DaN/cmq	141.100	
Resistenza a trazione di calcolofctd	DaN/cmq	11.938	
Resistenza cilindrica fck	DaN/cmq	249.000	
Resistenza a trazione mediafctm	DaN/cmq	25.581	

Classe acciaio		Acciaio B450C	
Resistenza allo snervamento fyk	DaN/cmq	>=4500.000	
Resistenza alla rottura ftk	DaN/cmq	>=5400.000	
Parti in legno			
Legno_Pressofl			
fyd	kN/m^2	14000.0	
Tipologia legno	Lamellare		
Classe di resistenza	GL24h		

In particolare, il legno impiegato sarà di classe GL24 (UNI EN 1194) con le seguenti caratteristiche

UNI EN 1194 - Valori caratteristici per le proprietà di resistenza e di rigidezza in N/mm² e di massa volumica in kg/m³ delle classi di resistenza per legno lamellare incollato omogeneo

Classe di resistenza del legno lamellare incollato		GL 24h	GL 28h	GL 32h	GL 36h
Resistenza a flessione	$f_{m,g,k}$	24	28	32	36
Resistenza a trazione	$f_{t,0,g,k}$	16,5	19,5	22,5	26
	f _{1,90,g,k}	0,4	0,45	0,5	0,6
Resistenza a compressione	f _{c,0,g,k}	24	26,5	29	31
	f _{c,90,g,k}	2,7	3,0	3,3	3,6
Resistenza a taglio	f _{v,g,k}	2,7	3,2	3,8	4,3
Modulo di elasticità	E _{0,g,mean}	11 600	12 600	13 700	14 700
	E _{0,g,05}	9 400	10 200	11 100	11 900
	E _{90,g,mean}	390	420	460	490
Modulo di taglio	$G_{ m g,mean}$	720	780	850	910
Massa volumica	$ ho_{g,k}$	380	410	430	450

UNI EN 1194 - Valori caratteristici per le proprietà di resistenza e di rigidezza in N/mm^2 e di massa volumica in kg/m^3 delle classi di resistenza per legno lamellare incollato combinato

Classe di resistenza del legno lamellare incollato		GL 24c	GL 28c	GL 32c	GL 36c
Resistenza a flessione	$f_{m,g,k}$	24	28	32	36
Resistenza a trazione	$f_{t,0,g,k}$	14	16,5	19,5	22,5
	f _{t,90,g,k}	0,35	0,4	0,45	0,5
Resistenza a compressione	f _{c.0,g,k}	21	24	26,5	29
	f _{c,90,g,k}	2,4	2,7	3,0	3,3
Resistenza a taglio	f _{v,g,k}	2,2	2,7	3,2	3,8
Modulo di elasticità	E _{0,g,mean}	11 600	12 600	13 700	14 700
	E _{0,g,05}	9 400	10 200	11 100	11 900
	E _{90,g,mean}	320	390	420	460
Modulo di taglio	$G_{ m g,mean}$	590	720	780	850
Massa volumica	$ ho_{\mathrm{g,k}}$	350	380	410	430

DOSATURE DEI MATERIALI

La dosatura dei materiali è orientativamente la seguente per m³ d'impasto, salvo la preparazione dei provini:

sabbia 0.4 m³

ghiaia 0.8 m³

acqua 120 litri

cemento tipo 425 3.5 q/m³

ACCIAI

Le armature metalliche saranno costituite da acciaio saldabile e qualificato secondo le procedure di cui ai punti 11.3.1.2 11.3.2 del D.M. 2008:

Tipo acciaio B450C

fv nom = 450 N/mmq – Tensione nominale di snervamento

ft nom = 540 N/mmq – Tensione nominale di rottura

fyk =450 N/mmq - Tensione caratteristica di snervamento

ftk =540 N/mmq - Tensione caratteristica di rottura

t aderenza 2.6 N/mmq

All'atto della posa in opera gli acciai devono presentarsi privi di ossidazione, corrosione, difetti superficiali visibili e pieghe. E' tollerata una ossidazione che scompaia totalmente mediante sfregamento con un panno asciutto. Non è ammessa in cantiere alcuna operazione di raddrizzamento.

Il Progettista

Comune di Santa Maria del Cedro

Provincia di Cosenza

PROGETTO: REALIZZAZIONE NUVO EDIFICIO PUBBLICO, DESTINATO A SCUOLA CON STRUTTURA IN LEGNO NEL COMUNE DI SANTA MARIA DEL CEDRO (CS). CLASSE D'USO DELLA COSTRUZIONE 3.

PRATICA: REALIZZAZIONE DEGLI INTERVENTI DIRETTI ALL'AMPLIAMENTO DELLA SCUOLA ELEMENTARE UBICATA IN VIA ORSOMARSO DEL COMUNE DI SANTA MARIA DEL CEDRO FRAZIONE MARCELLINA.

II Committente

Comune di Santa Maria del Cedro

via Nazionale n.16 87020, Santa Maria del Cedro (CS) Tel. 0.985/5727 - C.F. 00433700788

Il Responsabile del Servizio

Dott. Ing. Giuseppe Durante

I Progettisti e DD.LL.

Dott. Geom. Giuseppe Riccetti

Geom. Carmine Covucci

Data: novembre 2016

Tavola:	Elaborato :	
D3.1	Analisi dei Carichi	
Scala:	Visti e Pareri :	Aggiornamenti :

Scala:

Aggiornamenti:

ANALISI DEI CARICHI

Comune:	Santa Maria del cedro
Titolo del progetto:	REALIZZAZIONE NUVO EDIFICIO PUBBLICO, DESTINATO A SCUOLA CON STRUTTURA IN LEGNO NEL COMUNE DI SANTA MARIA DEL CEDRO (CS). CLASSE D'USO DELLA COSTRUZIONE 3
Committente:	
Opera:	
Data: 27/11/2016	Progettista:

SOVRACCARICO NEVE

<u>Provincia</u>: COSENZA

<u>Zona</u>: 3

Altitudine a_s : 0 m s.l.m.

<u>Esposizione</u>: Normale

<u>Periodo di ritorno</u>: 50 anni

Il carico neve sulle coperture viene valutato con la seguente espressione:

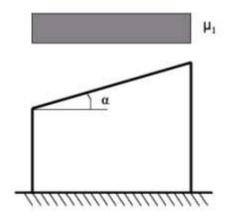
$$q_s = \mu_i \, \cdot \, q_{sk} \, \cdot \, C_E \, \cdot \, C_t \, KN/m^2$$

dove:

μ_i Coefficiente di forma della copertura

 $C_E = 1.0$ Coefficiente di esposizione

 $C_t = 1.0$ Coefficiente termico


 $q_{sk} = 0.60 \text{ KN/m}^2$ Carico neve al suolo

Nel caso in esame (copertura ad una falda), con

$$\alpha = 15.00^{\circ}$$

il coefficiente di forma vale:

$$\mu_l(\alpha) = 0.80 \qquad \Longrightarrow \qquad q_s = 0.48 \ KN/m^2$$

SOVRACCARICO VENTO

Zona Vento	$V_{b,0}$ (m/s)	a ₀ (m)	K _a (1/s)
3	27	500	0.020

Categoria di esposizione	K	z ₀ (m)	z _{min} (m)
4	0.22	0.30	8

 $a_s = 36 \text{ m}$ s.l.m. Altitudine:

Distanza dalla costa: terra - entro 10 Km

Classe di rugosità terreno:

h = 3.00 mAltezza manufatto:

Periodo di ritorno:

 $T_R = 50.0 \text{ anni} =>$ $\alpha_R = 0.75 \{1 - 0.2 \ln[-\ln(1 - 1/T_R)]\}^{0.5} = 1.00$

Velocità di riferimento del vento: $egin{aligned} m{V_b} &= V_{b,0} \ m{V_b} &= V_{b,0} + K_a \ (a_s - a_0) \end{aligned}$ per $a_s \leq a_0$

per $a_s > a_0$

 $V_b = 27.000 \text{ m/s}$

 $V_b(T_R) = \alpha_R V_b = 27.020 \text{ m/s}$

 $C_d = 1.00$ Coefficiente dinamico:

 $C_p = 0.80$ Coefficiente di forma:

 $C_f = 0.02$ Coefficiente di attrito:

 $C_{t} = 1.00$ Coefficiente di topografia:

 $C_e(z) = K^2 C_t \ln(z/z_0) [7 + C_t \ln(z/z_0)]$ Coefficiente di esposizione: per z ≥

 $\boldsymbol{Z}_{\text{min}}$

 $C_e(z) = C_e(z_{min})$ per $z < z_{min}$

 $C_e(z) = 1.63$

Le azioni del vento si traducono in pressioni (positive) e depressioni (negative) agenti normalmente alla superficie degli elementi che compongono la costruzione. La pressione agente su un singolo elemento è data dall'espressione:

$$\mathbf{p} = q_b C_e C_p C_d = 596.54 Pa$$

dove,

 $\mathbf{q_b} = 1/2 \, \rho \, \mathrm{v_b}^2$ è la pressione cinetica di riferimento;

 $\rho = 1.25 \text{ Kg/m}^3$ \ la densit◊ dell'aria. L'azione tangente per unità di superficie parallela alla direzione del vento è:

$$\mathbf{p_f} = q_b C_e C_f = 14.91 Pa$$

II Progettista

Comune di Santa Maria del Cedro

Provincia di Cosenza

<u>PROGETTO:</u> REALIZZAZIONE NUVO EDIFICIO PUBBLICO, DESTINATO A SCUOLA CON STRUTTURA IN LEGNO NEL COMUNE DI SANTA MARIA DEL CEDRO (CS). CLASSE D'USO DELLA COSTRUZIONE 3.

<u>PRATICA:</u> REALIZZAZIONE DEGLI INTERVENTI DIRETTI ALL'AMPLIAMENTO DELLA SCUOLA ELEMENTARE UBICATA IN VIA ORSOMARSO DEL COMUNE DI SANTA MARIA DEL CEDRO FRAZIONE MARCELLINA.

Il Committente

Comune di Santa Maria del Cedro

via Nazionale n.16 87020, Santa Maria del Cedro (CS) Tel. 0.985/5727 - C.F. 00433700788

Il Responsabile del Servizio

Dott. Ing. Giuseppe Durante

I Progettisti e DD.LL.

Dott. Geom. Giuseppe Riccetti

Geom. Carmine Covucci

Data: novembre 2016

Elaborato:

Relazione di calcolo strutturale

Scala:

Visti e Pareri :

Aggiornamenti:

RELAZIONE DI CALCOLO

Comune: Santa Maria del cedro

Titolo del progetto: REALIZZAZIONE NUVO EDIFICIO PUBBLICO, DESTINATO A SCUOLA CON STRUTTURA IN

DESTINATO A SCUOLA CON STRUTTURA IN LEGNO

NEL COMUNE DI SANTA MARIA DEL CEDRO (CS).

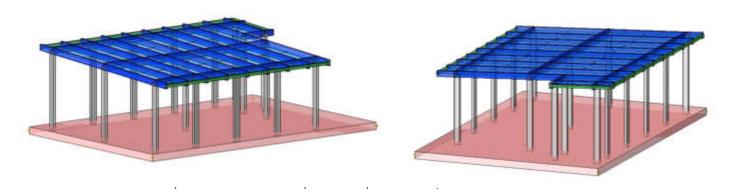
CLASSE D'USO DELLA COSTRUZIONE 3

Committente: Amministrazione Comunale

Opera: struttura intelaiata in legno

Data: Progettista:

Dott. Geom. Giuseppe Riccetti Geom. Carmine Covucci


INDICE:

- DESCRIZIONE GENERALE DELL'OPERA
- NORMATIVA DI RIFERIMENTO
- VITA NOMINALE, CLASSI D'USO E PERIODO DI RIFERIMENTO
- MATERIALI IMPIEGATI E RESISTENZE DI CALCOLO
- TERRENO DI FONDAZIONE
- ANALISI DEI CARICHI
- VALUTAZIONE DELL'AZIONE SISMICA
- ELEMENTI DI FONDAZIONE.
- METODO DI ANALISI E CRITERI DI VERIFICA.
- AZIONI SULLA STRUTTURA
- CODICE DI CALCOLO IMPIEGATO
- VERIFICA DEGLI ELEMENTI STRUTTURALI
- VALIDAZIONE DEL CALCOLO-INFORMAZIONI SULL'ELABORAZIONE
- TABULATI DI CALCOLO

DESCRIZIONE GENERALE DELL'OPERA

Il seguente progetto si riferisce alla realizzazione di un corpo giuntato, per all'Ampliamento dell'Edificio adibito a Scuola Elementare, sito in Via Orsomarso a Marcellina, nel Comune di Santa Maria del Cedro. La struttura sarà realizzata interamente in Legno, con un telaio costituito da travi e pilastri, bullonati ediante apposite piastre bullonate alla fondazionerealizzata da una platea in Calcestruzzo Armato.

Vengono riportate di seguito due viste assonometriche contrapposte, allo scopo di consentire una migliore comprensione della struttura oggetto della presente relazione:

L.R. Calabria 35 del 19.10.2009

Procedure per la denuncia, il deposito e l'autorizzazione di interventi di carattere strutturale e per la pianificazione territoriale in prospettiva sismica

D.M. 14.01.2008 (nuove norme tecniche per le costruzioni)

Nel seguito denominate NT (norme tecniche)

<u>Il calcolo delle sollecitazioni e la loro combinazione è stato eseguito seguendo le indicazioni delle NT secondo l'APPROCCIO 2</u>

VITA NOMINALE, CLASSI D'USO E PERIODO DI RIFERIMENTO

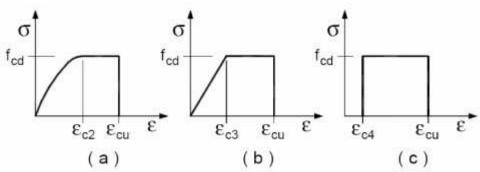
La costruzione in oggetto è definita dalla seguente tipologia (p.to 2.4 delle NT):

	<u> </u>
Vita della struttura	
Tino	Opere ordinarie (50-100) 50 -
Tipo	100 anni
Vita nominale(anni)	75.0
Classe d'uso	Classe III
Coefficiente d'uso	1.500
Periodo di riferimento(anni)	112.500
Stato limite di esercizio - SLD	PVR=63.0%
Stato limite ultimo - SLV	PVR=10.0%
Periodo di ritorno SLD(anni)	TR=113.2
Periodo di ritorno SLV(anni)	TR=1067.8

Per maggiori dettagli riguardo l'azione sismica si veda la definizione degli spettri di risposta

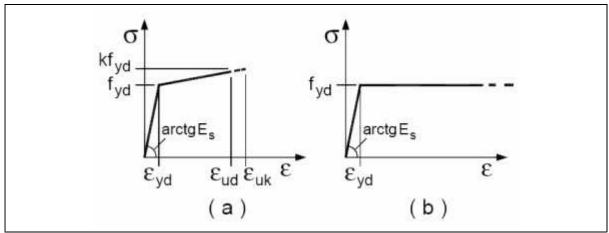
MATERIALI IMPIEGATI E RESISTENZE DI CALCOLO

Per la realizzazione dell'opera in oggetto saranno impiegati i seguenti materiali, di cui si riportano nell' ordine le proprietà meccaniche adottate nel calcolo elastico e le resistenze di calcolo per le verifiche di sicurezza:


Materiali

Materiale: Rck30		
Peso specifico	kN/m^3	25.0
Modulo di Young E	kN/m^2	3.12E07
Modulo di Poisson v		0.13
Coefficiente di dilatazione termica λ	1/°C	1e-005

Materiale: Legno		
Peso specifico	kN/m^3	8.0
Modulo di Young E	kN/m^2	1.16E07
Modulo di Poisson v		0.30
Coefficiente di dilatazione termica λ	1/°C	5e-006


Parti in calcestruzzo armato		
Classe calcestruzzo		Cls C25/30
Resistenza cubica Rck	DaN/cmq	300.000
Resistenza di calcolo fcd	DaN/cmq	141.100
Resistenza a trazione di calcolofctd	DaN/cmq	11.938
Resistenza cilindrica fck	DaN/cmq	249.000
Resistenza a trazione mediafctm	DaN/cmq	25.581
Classe acciaio		Acciaio B450C
Resistenza allo snervamento fyk	DaN/cmq	>=4500.000
Resistenza alla rottura ftk	DaN/cmq	>=5400.000
Parti in legno		
Legno_Pressofl		
fyd	kN/m^2	14000.0
Tipologia legno	Lamellare	
Classe di resistenza	GL24h	

I diagrammi costitutivi del calcestruzzo e dell'acciaio per calcestruzzo sono stati adottati in conformità alle indicazioni riportate al punto 4.1.2.1.2.2 del D.M. 14 gennaio 2008; in particolare per le verifiche delle sezioni in calcestruzzo armato è stato adottato il modello di calcestruzzo riportato in a) della figura seguente

Diagrammi di calcolo tensione/deformazione del calcestruzzo.

ed il modello di acciaio riportato in a) o b) della figura seguente

Diagrammi di calcolo tensione/deformazione dell'acciaio per calcestruzzo.

La resistenza di calcolo è data da f_yk / γ_f . Il coefficiente di sicurezza è γ_f .

Tutti i materiali impiegati dovranno essere comunque verificati con opportune prove di laboratorio secondo le prescrizioni della vigente Normativa. Riguardo ai coefficienti di sicurezza parziali, alle deformazioni del calcestruzzo e dell'acciaio per modello incrudente si faccia riferimento ai criteri di verifica nella sezione "Verifica Elementi Strutturali"

TERRENO DI FONDAZIONE

Le fondazioni del fabbricato in oggetto sono costituite da un insieme di: platea in conglomerato cementizio armato

La struttura di fondazione è posta ad una profondità media di m. 0.5 dal piano campagna e di dimensioni planimetriche massime pari a m.12.85 x 9.00

I valori delle tensioni sul piano di posa e le sollecitazioni negli elementi di fondazione, sono riportati nell'allegato 'Calcoli Strutturali'.Dalla Relazione Geologica redatta dal geologo Dott. Vincenzo Lucia risulta che nell'area in oggetto, si ha un terreno di tipo B con la seguente stratigrafia:

Strato n°		1
Spessore	m	10.00
Peso spec.	kN/m^3	18.0
Peso spec. Sat.	kN/m^3	20.0
Angolo attrito	0	30
Addensato		No
OCR		
coesione	kN/m^2	10
cu	kN/m^2	0

Per la determinazione del carico limite del complesso terreno-fondazione, pertanto, si sono assunti i parametri fisico-meccanici precedentemente indicati. Per maggiori dettagli riguardo i parametri che caratterizzano il terreno si rimanda alla relazione geologica e a quella geotecnica.

ANALISI DEI CARICHI

La valutazione dei carichi e dei sovraccarichi è stata effettuata in accordo con le disposizioni contenute nel **D.M. 14.01.2008 (nuove norme tecniche per le costruzioni)**

I carichi adottati sono i seguenti:

analisi dei carichi		
		kg/mq
carico fisso	pannello di copertura	3
	listellatura	4
	pannelli osb	13
	barriera vapore	0.1
	coibentazione	23
	controsoffitto in cartongesso	8
		51.1
carico accidentale	da normativa (copertura praticabile per manutenzione)	50
carico strutturale		18

SOVRACCARICO NEVE

Provincia: COSENZA

<u>Zona</u>: 3

Altitudine a_s : 0 m s.l.m.

Esposizione: Normale

<u>Periodo di ritorno</u>: 50 anni

Il carico neve sulle coperture viene valutato con la seguente espressione:

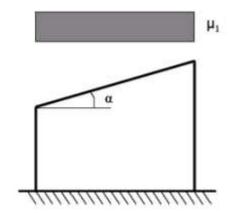
$$q_s = \mu_i \cdot q_{sk} \cdot C_E \cdot C_t \, KN/m^2$$

dove:

μ_i Coefficiente di forma della copertura

 $C_E = 1.0$ Coefficiente di esposizione

 $C_t = 1.0$ Coefficiente termico


$$q_{sk} = 0.60 \text{ KN/m}^2$$
 Carico neve al suolo

Nel caso in esame (copertura ad una falda), con

$$\alpha=15.00^{\circ}$$

il coefficiente di forma vale:

$$\mu_l(\alpha) = 0.80 \qquad => \qquad q_s = 0.48 \; KN/m^2$$

SOVRACCARICO VENTO

Zona Vento	V _{b,0} (m/s)	a₀ (m)	K _a (1/s)
3	27	500	0.020

Categoria di esposizione	K	z ₀ (m)	z _{min} (m)
4	0.22	0.30	8

Altitudine: $\mathbf{a_s} = 36 \text{ m}$ s.l.m.

Distanza dalla costa: terra - entro 10 Km

Classe di rugosità terreno:

h = 3.00 mAltezza manufatto:

Periodo di ritorno:

 $\begin{array}{l} \textbf{T}_{\textbf{R}} = 50.0 \text{ anni} & => \\ \textbf{\alpha}_{\textbf{R}} = 0.75 \left\{ 1 - 0.2 \ln[-\ln(1 - 1/T_R)] \right\}^{0.5} = 1.00 \end{array}$

Velocità di riferimento del vento: $V_b = V_{b,0}$ per $a_s \le a_0$

$$V_b = V_{b,0} + K_a (a_s - a_0)$$
 per $a_s > a_0$

$$V_b = 27.000 \text{ m/s}$$

$$V_b(T_R) = \alpha_R V_b = 27.020 \text{ m/s}$$

Coefficiente dinamico: $C_d = 1.00$

Coefficiente di forma: $C_p = 0.80$

Coefficiente di attrito: $C_f = 0.02$

Coefficiente di topografia: $C_t = 1.00$

<u>Coefficiente di esposizione</u>: $C_e(z) = K^2 C_t \ln(z/z_0) [7 + C_t \ln(z/z_0)]$ per z

 $\geq z_{min}$

 $C_e(z) = C_e(z_{min})$ per $z < z_{min}$

 $C_e(z) = 1.63$

Le azioni del vento si traducono in pressioni (positive) e depressioni (negative) agenti normalmente alla superficie degli elementi che compongono la costruzione. La pressione agente su un singolo elemento è data dall'espressione:

$$\mathbf{p} = q_b C_e C_p C_d = 596.54 Pa$$

dove,

$$\mathbf{q_b} = 1/2 \rho v_b^2$$
 è la pressione cinetica di riferimento;

$$ho$$
 = 1,25 Kg/m³ \quad la densit\(\delta\) dell'aria.

L'azione tangente per unità di superficie parallela alla direzione del vento è:

$$\mathbf{p_f} = q_h C_e C_f = 14.91 Pa$$

I carichi relativi ai pesi propri vengono valutati in automatico in funzione della geometria degli elementi ed al loro peso specifico i tamponamenti vengono valutati per metro lineare di trave su cui insistono maggiori dettagli ad essi relativi sono riportati nel tabulato di calcolo alla sezione dei carichi relativi alle aste, nodi ed shell.

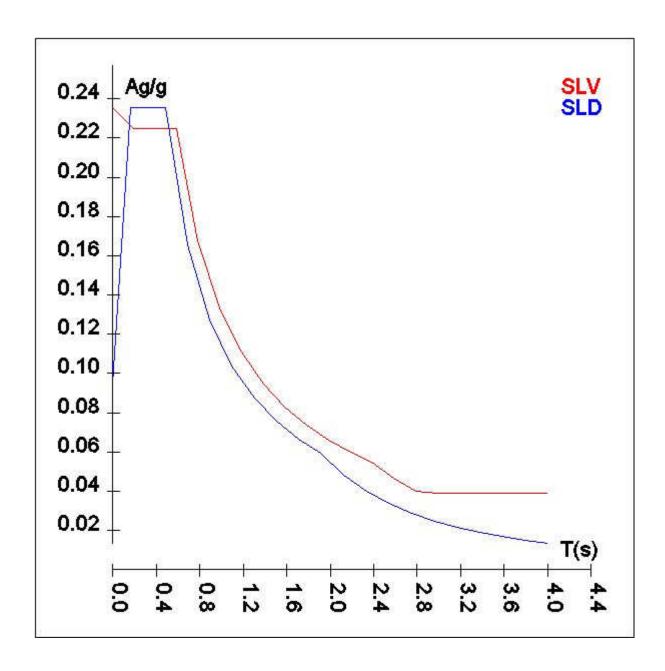
VALUTAZIONE DELL'AZIONE SISMICA

L'azione sismica è stata valutata in conformità alle indicazioni riportate al capitolo 3.2 del D.M. 14 gennaio 2008 "Norme tecniche per le Costruzioni"

La valutazione degli spettri di risposta per un dato Stato Limite avviene attraverso le seguenti fasi:

- † definizione della Vita Nominale e della Classe d'Uso della struttura, in base ai quali si determina il Periodo di Riferimento dell'azione sismica.
- Determinazione attraverso latitudine e longitudine dei parametri sismici di base a_g, F₀ e T*_c per lo Stato Limite di interesse; l'individuazione è stata effettuata interpolando tra i 4 punti più vicini al punto di riferimento dell'edificio secondo quanto disposto dall'allegato alle NTC "Pericolosità Sismica", dove:
- ag accelerazione orizzontale massima al sito;
- Fo valore massimo del fattore di amplificazione dello spettro in accelerazione orizzontale.
- T*c periodo di inizio del tratto a velocità costante dello spettro in accelerazione orizzontale
 - † Determinazione dei coefficienti di amplificazione stratigrafica e topografica.
- † Calcolo del periodo T_c corrispondente all'inizio del tratto a velocità costante dello Spettro.

I dati così calcolati sono stati utilizzati per determinare gli Spettri di Progetto nelle verifiche agli Stati Limite considerati, per ogni direzione dell'azione sismica.


Oltre alla determinazione dei parametri sismici del sito si è considerata la tipologia di terreno, la posizione topografica e la tipologia strutturale (classe di duttilità, regolarità, ecc..) che ha condotto alla determinazione dei seguenti spettri di risposta:

Spettri di risposta

<u>Spettro :SpettroNT</u> Il calcolo degli spettri e del fattore di struttura sono stati calcolati per la seguente tipologia di terreno e struttura

Vita della struttura	
Tipo	Opere ordinarie (50-100) 50 - 100 anni
Vita nominale(anni)	75.0
Classe d'uso	Classe III
Coefficiente d'uso	1.500
Periodo di riferimento(anni)	112.500
Stato limite di esercizio - SLD	PVR=63.0%
Stato limite ultimo - SLV	PVR=10.0%
Periodo di ritorno SLD(anni)	TR=113.2
Periodo di ritorno SLV(anni)	TR=1067.8
Parametri del sito	
Comune	Santa Maria del Cedro - (CS)
Longitudine	15.8276
Latitudine	39.7689
Id reticolo del sito	37887-37665-37664-37886
Valori di riferimento del sito	27007 27002 2700 2700
Ag/g(TR=113.2) SLD	0.0789
F0(TR=113.2) SLD	2.4851
T*C(TR=113.2) SLD	0.358
Ag/g(TR=1067.8) SLV	0.1961
F0(TR=1067.8) SLV	2.5239
T*C(TR=1067.8) SLV	0.453
Coefficiente Amplificazione Topografica	St=1.000
Categoria terreno B	
stato limite SLV	
	S=1.20
	TB=0.19
	TC=0.58
	TD=2.38
stato limite SLD	
	S=1.20
	TB=0.16
	TC=0.48
	TD=1.92
Fattore di struttura (SLV)	
Classe duttilità	В
Tipo struttura	Legno
Struttura non regolare in altezza	Kr=0.800000 Kw=1.000
Regolare in pianta	SI
Tipologia : Portali iperstatici con unioni a gambo cilindrico (spinotti e bulloni)	Ce=2.500
Fattore di struttura q=Kw*Kr*Ce	2.000

TSLV [s]	SLV[a/g]	TSLD [s]	SLD[a/g]
0.00000	0.23529	0.00000	0.09472
0.19444	0.22494	0.16125	0.23539
0.58333	0.22494	0.48376	0.23539
0.78343	0.16749	0.68833	0.16543
0.98354	0.13341	0.89290	0.12753
1.18365	0.11086	1.09746	0.10376
1.38375	0.09483	1.30203	0.08746
1.58386	0.08284	1.50660	0.07558
1.78397	0.07355	1.71116	0.06655
1.98408	0.06613	1.91573	0.05944
2.18418	0.06007	2.12416	0.04835
2.38429	0.05503	2.33258	0.04009
2.58625	0.04677	2.54101	0.03379
2.78822	0.04024	2.74944	0.02886
2.99018	0.03921	2.95786	0.02493
3.19214	0.03921	3.16629	0.02176
3.39411	0.03921	3.37472	0.01915
3.59607	0.03921	3.58315	0.01699
3.79804	0.03921	3.79157	0.01517
4.00000	0.03921	4.00000	0.01363

ELEMENTI DI FONDAZIONE.

Il calcolo della struttura di fondazione è condotto considerando le azioni che la struttura sovrastante le trasmette amplificate per un γ Rd pari a 1,1 in CD "B" e 1,3 in CD "A", e comunque non maggiori di quelle derivanti da una analisi elastica della struttura in elevazione eseguita con un fattore di struttura q pari a 1 e non maggiori delle resistenze degli elementi sovrastanti la fondazione.

METODO DI ANALISI E CRITERI DI VERIFICA.

Il calcolo delle azioni sismiche è stato eseguito in analisi dinamica modale, considerando il comportamento della struttura in regime elastico lineare. La masse sono applicate nei nodi del modello queste vengono generate attraverso i carichi agenti sulle membrature che collegano i nodi come la massa relativa alla azione di incastro perfetto del carico considerato. La risposta massima di una generica caratteristica E, conseguente alla sovrapposizione dei modi, è valutata con la tecnica della combinazione probabilistica definita CQC (Complete Quadratic Combination - Combinazione Quadratica Completa):

$$E = \sqrt{\sum_{i,j=1,n} \rho_{ij} \cdot E_i \cdot E_j}$$

con:

$$\rho_{ij} = \frac{8\xi^2 \cdot \left(1 + \beta_{ij}\right) \cdot \beta_{ij}^{\frac{3}{2}}}{\left(1 - \beta_{ij}^2\right)^2 + 4\xi^2 \cdot \beta_{ij} \cdot \left(1 + \beta_{ij}^2\right)} \qquad \beta_{ij} = \frac{\omega_i}{\omega_i}$$

dove:

n è il numero di modi di vibrazione considerati

è il coefficiente di smorzamento viscoso equivalente espresso in percentuale;

 β_{ii} è il rapporto tra le frequenze di ciascuna coppia i-j di modi di vibrazione.

Le sollecitazioni derivanti da tali azioni sono state calcolate per varie posizioni dei baricentri delle masse e composte secondo combinazioni di posizioni prestabilite, come riportato in seguito, il risultato di tali combinazioni sono state composte poi con quelle derivanti da carichi non sismici secondo le varie combinazioni di carico probabilistiche. Per tener conto della eccentricità accidentale delle masse si sono considerate varie posizioni delle masse ad ogni impalcato modificando la posizione del baricentro di una distanza, rispetto alla posizione originaria, come percentuale della dimensione della struttura nella direzione considerata. Le azioni risultanti dai calcoli per le varie posizioni delle masse, in fase di verifica vengono combinati al fine di ottenere le azioni piu' sfavorevoli; di seguito vengono riportate sia le posizioni che le combinazioni delle masse, le due tabelle vanno lette nel seguente modo:

la prima indica la percentuale delle dimensione della struttura secondo cui viene spostato il baricentro ad ogni impalcato la percentuale è assegnata nelle due direzioni ortogonali secondo cui agisce il sisma, per ognuna di tali posizioni è eseguito un calcolo modale della struttura; la seconda tabella è usata in fase di verifica per la valutazione dell'azione sismica nel seguente modo l'effetto del sisma in una direzione è combinato con quello ortogonale di un'altra posizione con i fattori specificati nelle due colonne:

Percentuali Spostamento masse impalcati

Posizione	% Spostamento direzione X	% Spostamento direzione Y
1	5	5

Combinazioni del Sisma in X e Y e Verticale

	Comb	Pos. SismaX	Pos. SismaY	Fx	Fy	Fz
	1	1	1	1	0	0
Ī	2	1	1	0	1	0

Comb. = Numero di combinazione dei sismi

Pos. SismaX = Posizione in cui viene scelto il sisma in direzione X

Pos. SismaY = Posizione in cui viene scelto il sisma in direzione Y

Fx = Fattore con cui il sisma X partecipa Fy = Fattore con cui il sisma Y partecipa

Fz = Fattore con cui il sisma Verticale partecipa (quando richiesto)

Ogni combinazione genera al massimo 8 sotto-combinazioni in base a tutte le combinazioni possibili dei segni di Fx ed Fy ed Fz

Si è considerato un numero di modi di vibrazione sufficiente ad eccitare almeno l'85% della massa sismica in ogni posizione delle masse, di seguito si riportano i risultati salienti dell'analisi modale sia per il calcolo allo Stato Limite Ultimo che per quello di Esercizio:

Periodi di vibrazione e Masse modali

Scenario di calcolo : Set_NT_SLV_SLD_A2_STR/GEO

Posizione masse 1

Numero di Frequenze calcolate =35, filtrate=6

N	T(s)	Coeff. Parte	ecipazione	Masse	Modali	Percentuali		
				kgn	n*g			
		Dir=0°	Dir=90°	Dir=0°	Dir=90°	Dir=0°	Dir=90°	
1(1)	0.4795	53.907	-4.292	28498	181	91.55	0.58	
2(2)	0.4619	-4.042	-55.133	160	29809	0.51	95.77	
3(3)	0.3428	3.232	6.442	102	407	0.33	1.31	
4(4)	0.2740	7.189	1.135	507	13	1.63	0.04	
5(5)	0.2397	13.714	-1.736	1844	30	5.93	0.09	
6(6)	0.1719	-0.474	-7.967	2	622	0.01	2.00	
Somma delle	: Masse Moda	ali [kgm*g]		31114	31061			
Masse struttu	ırali libere [k	gm*g]		31126	31126			
Percentuale				99.96	99.79	99.96	99.79	

AZIONI SULLA STRUTTURA

I calcoli e le verifiche sono condotti con il metodo semiprobabilistico degli stati limite secondo le indicazioni del D.M. 14 gennaio 2008. I carichi agenti sui solai, derivanti dall'analisi dei carichi, vengono assegnati alle aste in modo automatico in relazione all'influenza delle diverse aree di carico. I carichi dovuti ai tamponamenti, sia sulle travi di fondazione che su quelle di piano, sono schematizzati come carichi lineari agenti esclusivamente sulle aste. In presenza di platee il tamponamento è inserito considerando delle speciali aste (aste a sezione nulla) che hanno la sola funzione di riportare il carico su di esse agente nei nodi degli elementi della platea ad esse collegati. Su tutti gli elementi strutturali è inoltre possibile applicare direttamente ulteriori azioni concentrate e/o distribuite. Le azioni introdotte direttamente sono combinate con le altre (carichi permanenti, accidentali e sisma) mediante le combinazioni di carico di seguito descritte; da esse si ottengono i valori probabilistici da impiegare successivamente nelle verifiche.

I solai, oltre a generare le condizioni di carico per carichi fissi e variabili, generano anche altre condizioni di carico che derivano dal carico accidentale moltiplicati per i coefficienti ψ 0, ψ 1 e ψ 2 da utilizzare per le varie combinazioni di carico e per la determinazione delle masse sismiche.

Le azioni sono state assegnate su aste e piastre, definendo le sequenti condizioni di carico

Descrizione	Tipo	-
Peso Proprio	Automatica	
QP Solai	Automatica	
QFissi Solai	Automatica	
OV Solai	Automatica	

QV SolaiPsi0	Automatica
QV SolaiPsi1	Automatica
QV SolaiPsi2	Automatica
Tamponamenti(G2)	Utente
Neve	Utente
Vento X	Utente
Vento Y	Utente
Carichi termici	Utente

In fase di combinazione delle condizioni di carico si è agito su coefficienti moltiplicatori delle condizioni per definirne l'esatto contributo sia in termini di carico che di massa, e sono stati infine definiti gli scenari di calcolo come gruppi omogenei di combinazioni di carico. DI seguito vengono riportate le combinazioni di carico usate per lo Stato Limite Ultimo e per lo Stato Limite di Esercizio. Le verifiche sono riportate nel fascicolo dei calcoli.

Le tabelle riportano nell'ordine:

- il nome della combinazione di carico
- il tipo di analisi svolta: STR=Strutturale, Statica STR=Sismica statica Strutturale, Modale STR=Sismica modale strutturale, SLE Rara=Stato Limite Esercizio combinazione rara, SLE Freq=Stato Limite Esercizio combinazione frequente, SLE Q.Perm=Stato Limite Esercizio combinazione quasi Permanente, GEO=Geotecnica, Statica GEO=Sismica Statica Geotecnica, Modale GEO=Sismica modale Geotecnica, STR+GEO=Strutturale+Geotecnica, Statica STR+GEO=Sismica Statica Strutturale+Geotecnica, Modale SLE= Combinazione sismica modale con spettro di progetto SLD, Statica SLE=Combinazione sismica statica con spettro di progetto SLD. I termini "Strutturale", "Geotecnica" e "Strutturale+Geotecnica" indicano che la combinazione è usata dal programma per la determinazione delle verifiche di resistenza degli elementi strutturali, delle sole verifiche geotecniche, sia per le verifiche strutturali che geotecniche.
- lo spettro usato, se sismica
- il fattore amplificativo del sisma
- l'angolo di ingresso del sisma, se trattasi di analisi sismica
- il nome della condizione di carico e per ogni condizione di carico
- il fattore di combinazione per i carichi verticali
- se la condizione (con il suo coefficiente di peso) è inclusa nella combinazione (colonna Attiva)
- se la condizione partecipa alla formazione della massa (colonna Massa)
- il fattore con cui partecipa alla formazione della massa (se non è esclusa dalla formazione della massa)

Scenario di calcolo

Scenario: Set NT SLV SLD A2 STR/GEO

Combinazione	Tipo	Spettro	F.Sisma	α	K mod	Cond.Carico	Fatt. cv.	Attiva	Massa	Fattore m.
1) Solo Permanenti	STR				0.60					
						Peso Proprio	1.3	Si	Si	1
						QP Solai	1.3	Si	Si	1
						QFissi Solai	1.5	Si	Si	1
						QV Solai	1	No	No	1
						QV SolaiPsi0	1	No	No	1
						QV SolaiPsi1	1	Si	No	1
						QV SolaiPsi2	1	Si	Si	1
						Tamponamenti(G2)	1.5	Si	Si	1
						Neve	1	No	No	1
						Vento X	1	No	No	1
						Vento Y	1	No	No	1
						Carichi termici	1	No	No	1
						_			•	

Peso Proprior 1.3 Si Si Si QP Solari 1.5 Si Si No QP Solari 1.5 Si Si No QP Solari 1.5 Si Si Si QP Solari 1.5 Si Si Si Si QP Solari 1.5 Si Si Si Si QP Solari 1.5 Si Si Si Si Si QP Solari 1.5 Si Si Si Si Si Si Si S	Combinazione	Tipo	Spettro	F.Sisma	α	K mod	Cond.Carico	Fatt.	Attiva	Massa	Fattore m.
QP Solar 1.3 Si Si Si QV Solar 1.5 Si Si Si QV Solar 1.5 Si Si No QV Solar 1.5 Si Si No QV Solar 1.5 Si Si Si QV Solar 1.5 Si Si Si Si QV Solar 1.5 Si Si Si Si Si Si Si S	2) AD QVSolai	STR+GEO				0.90	Dasa Propria	1.2	C;	Ç;	1
QFiss Solari 1.5 Si No											1
QV Solair 1.5 Si No											1
QV SolaiP31 1 No No No No No No QV SolaiP31 1 No No No QV SolaiP32 1 Si Si Si Si Tamponamenti(G2) 1.5 Si Si Si No No No No No No No N											1
QV Solarisi											1
QV SolaiPsi2 1 Si Si Si Tamponamentif(Q2) 1.5 Si Si Si No New 0.75 Si No No New New 0.75 Si No No No New New New 0.75 Si No No No New New New No No No No No No No N								1			1
Tamponamenti(C2) 1.5 Si No Neve 0.75 Si Si No Neve								1			1
Neve Neve 0.75 Si No No No No No No No N								1.5			1
New Care New Care											1
No Carichi termici 0.9 Si No											1
3) AD QVSolai STR+GEO 0.90 Peso Proprio 1.3 Si Si QP Solai 1.3 Si Si QP Solai 1.3 Si Si QP Solai 1.5 Si No QV Solai 1.5 Si Si Si QP Solai 1.5 Si Si No QV Solai Si Si No QV Solai Si Si No QP Solai Si Si No QP Solai Si Si Si Si Si Si Si								0.9			1
Peso Proprio 13 Si Si Si OP Solai 15 Si Si No OP Solai 15 Si Si No OP Solai Solai 15 Si No OP Solai Solai Si Si No OP Solai Solai Si Si No OP Solai							Carichi termici	0.9	Si	No	1
Peso Proprio 13 Si Si Si OP Solai 15 Si Si No OP Solai 15 Si Si No OP Solai Solai 15 Si No OP Solai Solai Si Si No OP Solai Solai Si Si No OP Solai Solai Si Si Si Si Tamponamenti(G2) 1.5 Si Si Si No OP Solai Sol											
QP Solai 13 Si Si Si	3) AD QVSolai	STR+GEO				0.90					
QFissi Solai 1.5 Si No QV Solai 1.5 Si No No QV Solai 1.1 No No QV Solai No No QV Solai No QV Solai No QV Solai No No QV Solai No QV Solai							Peso Proprio	1.3	Si	Si	1
QV SolaiPsid							QP Solai	1.3	Si	Si	1
QV SolaiPsi0							QFissi Solai	1.5		Si	1
QV SolaiPsi2								1.5	Si		1
QV SolaiPsi2							QV SolaiPsi0	1	No	No	1
Tamponamenti(G2) 1.5 Si Si No							QV SolaiPsi1	1	Si	No	1
Neve							QV SolaiPsi2	1			1
Vento X 0.9 Si No Vento Y 1 No No Vento Y 1 No No Vento Y Vento Y No Vento Y Vento X							Tamponamenti(G2)				1
Vento Y 1 No No								0.75		No	1
Carichi termici 0.9 Si No							Vento X	0.9	Si	No	1
A) AD Neve STR+GEO							Vento Y	1	No	No	1
Peso Proprio 1.3 Si Si QP Solai 1.5 Si Si Si QF Solai 1.5 Si Si Si QF Solai 1.5 Si Si Si QF Solai 1.5 Si Si QF Solai 1.5 Si Si No QV Solai 1 No No No QV Solai 1 Si Si Si Tamponamenti(G2) 1.5 Si Si Si No No No No No No No N							Carichi termici	0.9	Si	No	1
Peso Proprio 1.3 Si Si QP Solai 1.5 Si Si Si Si QP Solai 1.5 Si Si Si QF Solai 1.5 Si Si Si QF Solai 1.5 Si Si Si QV Solai 1 No No No QV Solai 1 No No No QV Solai 1 Si Si Si Tamponamenti(G2) 1.5 Si Si Si No No No No No No No N											
QP Solai 1.3 Si Si QFissi Solai 1.5 Si Si QV Solai 1 No No QV SolaiPsi0 1.5 Si No QV SolaiPsi0 1.5 Si No QV SolaiPsi1 1 Si No QV SolaiPsi2 1 Si Si QV SolaiPsi2 1 Si Si QV SolaiPsi2 1 Si Si Tamponamenti(G2) 1.5 Si No Vento X 1 No No Vento Y 0.9 Si No Vento Y 0.9 Si No Carichi termici 0.9 Si No STR+GEO 0.80 STR+GEO 0.80 Peso Proprio 1.3 Si Si QP Solai 1.3 Si Si QV SolaiPsi0 1.5 Si No QV SolaiPsi0 1.5 Si Si QV SolaiPsi0 1.5 Si No QV SolaiPsi0 1.5 Si No QV SolaiPsi0 1.5 Si Si QV SolaiPsi0 1.5 Si No Vento X 0.9 Si No Vento X 0.9 Si No Vento X 0.9 Si No Vento X 1.5 Si Si QP Solai 1.5 Si Si QP SolaiPsi0 1.5 Si Si	4) AD Neve	STR+GEO				0.80					
OFissi Solai 1.5 Si Si OV Solai 1 No No							Peso Proprio	1.3	Si	Si	1
QV Solai							QP Solai	1.3			1
QV SolaiPsi0 1.5 Si No								1.5	Si		1
QV SolaiPsi1										No	1
QV SolaiPsi2							QV SolaiPsi0	1.5	Si	No	1
Tamponamenti(G2) 1.5 Si Si No Neve 1.5 Si Si Ne Neve 1.5 Si Si No Neve 1.5 Si Si No Neve 1.5 Si Si No Neve 1.5 Si No Neve 1.5 Si Si No Neve 1.5 Si								1			1
Neve 1.5 Si No Vento X 1 No No No Vento Y 0.9 Si No Vento Y 0.9 Si No Outlook Yento Y 0.9 Si No Outlook Yento Y Outlook Yento Ye											1
Vento X							Tamponamenti(G2)				1
Vento Y 0.9 Si No							Neve	1.5	Si	No	1
Carichi termici 0.9 Si No							Vento X	1		No	1
STR+GEO								0.9	Si	No	1
Peso Proprio 1.3 Si Si QP Solai 1.3 Si Si Si QP Solai 1.3 Si Si Si QP Solai 1.3 Si Si Si QP Solai 1.5 Si Si Si QV Solai 1 No No QV SolaiPsi0 1.5 Si No QV SolaiPsi1 1 Si No QV SolaiPsi2 1 Si Si Si Si Si Si Si							Carichi termici	0.9	Si	No	1
Peso Proprio 1.3 Si Si QP Solai 1.3 Si Si QP Solai 1.3 Si Si Si QP Solai 1.3 Si Si Si QP Solai 1.5 Si Si Si QV Solai 1 No No QV SolaiPsi0 1.5 Si No QV SolaiPsi1 1 Si No QV SolaiPsi2 1 Si Si Si Si Si Si Si											
QP Solai 1.3 Si Si Si QFissi Solai 1.5 Si Si Si QFissi Solai 1.5 Si Si Si QV Solai 1 No No No QV SolaiPsi0 1.5 Si No QV SolaiPsi1 1 Si No QV SolaiPsi2 1 Si Si Si Si Tamponamenti(G2) 1.5 Si Si Si No No No No No No No N	5) AD Neve	STR+GEO				0.80					
QFissi Solai 1.5 Si Si QV Solai 1 No No No No QV SolaiPsi0 1.5 Si No QV SolaiPsi0 1.5 Si No QV SolaiPsi1 1 Si No QV SolaiPsi2 1 Si Si Si Si Tamponamenti(G2) 1.5 Si Si Si No No No No No No No N											1
QV Solai							QP Solai				1
QV SolaiPsi0 1.5 Si No								1.5			1
QV SolaiPsi1											1
QV SolaiPsi2								1.5			1
Tamponamenti(G2) 1.5 Si Si Si No Neve 1.5 Si No Neve Netto X 0.9 Si No No No No No No No No	·									No	1
Neve 1.5 Si No											1
Vento X 0.9 Si No							Tamponamenti(G2)				1
Vento Y											1
Vento Y 1 No No								0.9			1
6) AD VentoX Vert. Sfav STR+GEO 0.90 Peso Proprio 1.3 Si Si QP Solai 1.3 Si Si QV Solai 1 No No QV SolaiPsi0 1.5 Si No QV SolaiPsi1 1 Si No							Vento Y				1
Sfav STR+GEO 0.90 Peso Proprio 1.3 Si Si Si QP Solai 1.3 Si Si Si Si Si Si Si S							Carichi termici	0.9	Si	No	1
Sfav STR+GEO 0.90 Peso Proprio 1.3 Si Si Si QP Solai 1.3 Si Si Si Si Si Si Si S											
Peso Proprio 1.3 Si Si QP Solai 1.3 Si Si QP Solai 1.5 Si Si QV Solai 1 No No QV SolaiPsi0 1.5 Si No QV SolaiPsi1 1 Si No		STR+GEO				0.90					
QP Solai 1.3 Si Si QFissi Solai 1.5 Si Si QV Solai 1 No No QV SolaiPsi0 1.5 Si No QV SolaiPsi1 1 Si No	Siav					+ +	Peso Proprio	1 3	Si	Si	1
QFissi Solai 1.5 Si Si QV Solai 1 No No QV SolaiPsi0 1.5 Si No QV SolaiPsi1 1 Si No						+ +					1
QV Solai 1 No No QV SolaiPsi0 1.5 Si No QV SolaiPsi1 1 Si No						+ +					1
QV SolaiPsi0 1.5 Si No QV SolaiPsi1 1 Si No						+ +					1
QV SolaiPsi1 1 Si No				+		+ +					1
				+		+ +					1
OV SolaiPsi2 1 Si Si							QV SolaiPsi2		Si	Si	1

Combinazione	Tipo	Spettro	F.Sisma	α	K mod	Cond.Carico	Fatt. cv.	Attiva	Massa	Fattore m.
					mou	Tamponamenti(G2)	1.5	Si	Si	1
						Neve	0.75	Si	No	1
						Vento X	1.5	Si	No	1
						Vento Y	1	No	No	1
						Carichi termici	0.9	Si	No	1
7) AD W. (3/3/)										
7) AD VentoY Vert. Sfav	STR+GEO				0.90					
Siuv						Peso Proprio	1.3	Si	Si	1
						QP Solai	1.3	Si	Si	1
						QFissi Solai	1.5	Si	Si	1
						QV Solai	1	No	No	1
						QV SolaiPsi0	1.5	Si	No	1
						QV SolaiPsi1	1	No	No	1
						QV SolaiPsi2	1	No	Si	1
						Tamponamenti(G2)	1.5	Si	Si	1
						Neve	0.75	Si	No	1
						Vento X	1	No	No	1
						Vento Y Carichi termici	1.5 0.9	Si Si	No No	1
						Carichi termici	0.9	51	No	J
8) AD Termici	STR+GEO				-1.00					
						Peso Proprio	1.3	Si	Si	1
						QP Solai	1.3	Si	Si	1
						QFissi Solai	1.5	Si	Si	1
						QV Solai	1	No	No	1
						QV SolaiPsi0	1.5	Si	No	1
						QV SolaiPsi1	1	No	No	1
						QV SolaiPsi2	1	No	Si	1
						Tamponamenti(G2)	1.5	Si	Si	1
						Neve	0.75	Si	No	1
						Vento X	0.9	Si	No	1
						Vento Y Carichi termici	1.5	No Si	No No	1
						Carichi termici	1.5	51	NO	1
9) AD Termici	STR+GEO				-1.00					
						Peso Proprio	1.3	Si	Si	1
						QP Solai	1.3	Si	Si	1
						QFissi Solai	1.5	Si	Si	1
						QV Solai	1	No	No	1
						QV SolaiPsi0	1.5	Si	No	1
						QV SolaiPsi1	1	No	No	1
						QV SolaiPsi2	1	No	Si	1
						Tamponamenti(G2)	1.5	Si	Si	1
						Neve	0.75	Si	No	1
						Vento X Vento Y	0.9	No Si	No No	1
						Carichi termici	1.5	Si	No	1
						Curiem termier	1.5	51	110	
10) AD VentoX	STR+GEO				0.90					
Vert fav						Peso Proprio	1	Si	Si	1
						QP Solai	1	Si	Si	1
						QFissi Solai	1	No	Si	1
						QV Solai	1	No	No	1
						QV SolaiPsi0	1	No	No	1
						QV SolaiPsi1	1	No	No	1
						QV SolaiPsi2	1	No	Si	1
						Tamponamenti(G2)	1	No	Si	1
						Neve Neve	1	No	No	1
						Vento X	1.5	Si	No	1
						Vento Y	1	No	No	1
						Carichi termici	1	No	No	1

Combinazione	Tipo	Spettro	F.Sisma	α	K	Cond.Carico	Fatt.	Attiva	Massa	Fattore
Vert fav	Про	эрсиго	1 .oroma	- u	mod	Condicaries	cv.	211114	1VIII33II	m.
ven iav						Peso Proprio	1	Si	Si	1
						QP Solai	1	Si	Si	1
						QFissi Solai	1	No	Si	1
						QV Solai	1	No	No	1
						QV SolaiPsi0	1	No	No	1
						QV SolaiPsi1	1	No	No	1
						QV SolaiPsi2	1	No	Si	1
						Tamponamenti(G2)	1	No	Si	1
						Neve	1	No	No	1
						Vento X Vento Y	1.5	No Si	No No	1
						Carichi termici	1.3	No	No	1
						Carlein termier	1	110	110	1
12) SISMAX_SLV	Modale	SpettroNT	1	0	1.00					
12) SISIVITAL_SE V	STR+GEO	эрсшогч	1	U	1.00			a.	~.	
						Peso Proprio	1	Si	Si	1
						QP Solai	1	Si Si	Si Si	1
						QFissi Solai QV Solai	1	No	No	1
						QV SolaiPsi0	1	No	No	1
						QV SolaiPsi1	1	No	No	1
						QV SolaiPsi2	1	Si	Si	1
						Tamponamenti(G2)	1	Si	Si	1
						Neve	1	No	No	1
						Vento X	1	No	No	1
						Vento Y	1	No	No	1
						Carichi termici	1	No	No	1
	37.11									
13) SISMAY_SLV	Modale STR+GEO	SpettroNT	1	90	1.00					
	STRIGEO					Peso Proprio	1	Si	Si	1
						QP Solai	1	Si	Si	1
						QFissi Solai	1	Si	Si	1
						QV Solai	1	No	No	1
						QV SolaiPsi0	1	No	No	1
						QV SolaiPsi1	1	No	No	1
						QV SolaiPsi2	1	Si	Si	1
						Tamponamenti(G2)	1	Si	Si	1
						Neve	1	No	No	1
						Vento X	1	No	No	1
						Vento Y	1	No	No	1
						Carichi termici	1	No	No	1
14) AD QVSolai	SLE Rara				1.00					
						Peso Proprio	1	Si	Si	1
						QP Solai	1	Si	Si	1
						QFissi Solai	1	Si	Si	1
						QV Solai	1	Si	No	1
						QV SolaiPsi0	1	Si	No	1
						QV SolaiPsi1	1	Si	No	1
						QV SolaiPsi2	1	Si	Si Si	1
						Tamponamenti(G2)	0.5	Si Si	No	1
						Neve Vento X	0.5	No	No No	1
						Vento Y	0.6	Si	No	1
						Carichi termici	0.6	Si	No	1
15) AD QVSolai	SLE Rara				1.00					
						Peso Proprio	1	Si	Si	1
						QP Solai	1	Si	Si	1
						QFissi Solai	1	Si	Si	1
						QV Solai	1	Si	No	1
						QV SolaiPsi0	1	Si	No	1
						QV SolaiPsi1	1	Si	No	1

Combinazione	Tipo	Spettro	F.Sisma	α	K mod	Cond.Carico	Fatt. cv.	Attiva	Massa	Fattore m.
					11104	QV SolaiPsi2	1	Si	Si	1
						Tamponamenti(G2)	1	Si	Si	1
						Neve	0.5	Si	No	1
						Vento X	0.6	Si	No	1
						Vento Y	1	No	No	1
						Carichi termici	0.6	Si	No]
16) AD Neve	SLE Rara				1.00					
,						Peso Proprio	1	Si	Si	1
						QP Solai	1	Si	Si	1
						QFissi Solai	1	Si	Si	1
						QV Solai	1	No	No	
						QV SolaiPsi0 QV SolaiPsi1	1	Si No	No No	
						QV SolaiPsi2	1	No	Si	
						Tamponamenti(G2)	1	Si	Si	
						Neve	1	Si	No	
						Vento X	1	No	No	
						Vento Y	0.6	Si	No	
						Carichi termici	0.6	Si	No	
17) AD N	CLED				1.00					
17) AD Neve	SLE Rara				1.00	Peso Proprio	1	Si	Si	
						QP Solai	1	Si	Si	
						QFissi Solai	1	Si	Si	
						QV Solai	1	No	No	
						QV SolaiPsi0	1	Si	No	
						QV SolaiPsi1	1	No	No	
						QV SolaiPsi2	1	No	Si	
						Tamponamenti(G2)	1	Si	Si	
						Neve	1	Si Si	No No	
						Vento X Vento Y	0.6	No	No	
						Carichi termici	0.6	Si	No	
10) 10 11 11	GI E D				1.00					
18) AD VentoX	SLE Rara				1.00	Peso Proprio	1	Si	Si	
						QP Solai	1	Si	Si	
						QFissi Solai	1	Si	Si	
						QV Solai	1	No	No	
						QV SolaiPsi0	1	Si	No	
						QV SolaiPsi1	1	No	No	
						QV SolaiPsi2	1	No	Si	
						Tamponamenti(G2)	1	Si	Si	
						Neve	0.5	Si	No	
						Vento X Vento Y	1	Si No	No No	
						Carichi termici	0.6	Si	No	
19) AD vento Y	SLE Rara				1.00					
						Peso Proprio	1	Si	Si	
					+ +	QP Solai QFissi Solai	1	Si Si	Si Si	
						QF1SS1 S01a1 QV Solai	1	No	No	
						QV SolaiPsi0	1	Si	No	
						QV SolaiPsi1	1	No	No	
						QV SolaiPsi2	1	No	Si	
						Tamponamenti(G2)	1	Si	Si	
						Neve	0.5	Si	No	
						Vento X	1	No	No	
						Vento Y Carichi termici	0.6	Si Si	No No	
						Carichi termici	0.6	51	NO	
20) AD Termici	SLE Rara				1.00	n .		~.	~:	
					1	Peso Proprio	1	Si	Si	

Combinazione	Tipo	Spettro	F.Sisma	α	K	Cond.Carico	Fatt.	Attiva	Massa	Fattore
Combinazione	Tipo	Spettro	r.sisilia	u	mod		cv.			m.
						QP Solai	1	Si	Si	1
						QFissi Solai	1	Si	Si	1
						QV Solai QV SolaiPsi0	1	No Si	No No	1
						QV SolaiPsi1	1	No	No	1
						QV SolaiPsi2	1	No	Si	1
						Tamponamenti(G2)	1	Si	Si	1
						Neve Neve	0.5	Si	No	1
						Vento X	1	No	No	1
						Vento Y	0.6	Si	No	1
						Carichi termici	1	Si	No	1
21) AD Termici	SLE Rara				1.00					
						Peso Proprio	1	Si	Si	1
						QP Solai	1	Si	Si	1
						QFissi Solai	1	Si	Si	1
						QV Solai	1	No	No	1
						QV SolaiPsi0	1	Si	No	1
						QV SolaiPsi1	1	No	No	1
						QV SolaiPsi2	1	No	Si	1
						Tamponamenti(G2)	1	Si	Si	1
						Neve	0.5	Si	No	1
						Vento X	0.6	Si	No	1
						Vento Y	1	No	No	1
						Carichi termici	1	Si	No	1
22) AD OVG 1:	CLEE				1.00					
22) AD QVSolai	SLE Freq.				1.00	D D	1	Si	Si	1
						Peso Proprio QP Solai	1	Si	Si	1
						QF Solai QFissi Solai	1	Si	Si	1
						QV Solai	1	No	No	1
						QV SolaiPsi0	1	No	No	1
						QV SolaiPsi1	1	Si	No	1
						QV SolaiPsi2	1	No	Si	1
						Tamponamenti(G2)	1	Si	Si	1
						Neve	1	No	No	1
						Vento X	1	No	No	1
						Vento Y	1	No	No	1
						Carichi termici	1	No	No	1
23) AD Neve	SLE Freq.				1.00					
						Peso Proprio	1	Si	Si	1
						QP Solai	1	Si	Si	1
						QFissi Solai	1	Si	Si	1
						QV Solai	1	No	No	1
						QV SolaiPsi0	1	No	No	1
						QV SolaiPsi1	1	No	No	1
						QV SolaiPsi2	1	Si	Si	1
						Tamponamenti(G2)	1	Si	Si	1
						Neve Vanta V	0.2	Si	No	1
						Vento X Vento Y	1	No No	No No	1
						Carichi termici	1	No	No	1
						Caricili termici	1	INO	110	1
24) AD VentoX	SLE Freq.				1.00					
21,11D VOIIOA	DEE TICY.				1.00	Peso Proprio	1	Si	Si	1
						QP Solai	1	Si	Si	1
						QFissi Solai	1	Si	Si	1
						QV Solai	1	No	No	1
						QV SolaiPsi0	1	No	No	1
						QV SolaiPsi1	1	No	No	1
						QV SolaiPsi2	1	Si	Si	1
						Tamponamenti(G2)	1	Si	Si	1
						Neve	1	No	No	1
						Vento X				

Combinazione	Tipo	Spettro	F.Sisma	α	K	Cond.Carico	Fatt.	Attiva	Massa	Fattor
Combinazione	Tipo	Spettro	I .SISIIIa	u	mod		cv.			m.
						Vento Y	1	No	No	
						Carichi termici	1	No	No	
25) AD Vento Y	SLE Freq.				1.00					
23) 113 (Cinco 1	SEE Freq.				1.00	Peso Proprio	1	Si	Si	
						QP Solai	1	Si	Si	
						QFissi Solai	1	Si	Si	
						QV Solai	1	No	No	
						QV SolaiPsi0	1	No	No	
						QV SolaiPsi1	1	No	No	
						QV SolaiPsi2	1	Si	Si	
						Tamponamenti(G2)	1	Si	Si	
						Neve	1	No	No	
						Vento X	1	No	No	
						Vento Y	0.2	Si	No	
						Carichi termici	1	No	No	
26) AD Termici	SLE Freq.				1.00	D D:-	1	C:	C:	
						Peso Proprio	1	Si	Si	
						QP Solai	1	Si	Si	
						QFissi Solai	1	Si	Si	
						QV Solai	1	No	No	
						QV SolaiPsi0	1	No	No	
						QV SolaiPsi1	1	No	No.	
						QV SolaiPsi2	1	Si Si	Si Si	
						Tamponamenti(G2)	1			
						Neve	1	No	No No	
						Vento X Vento Y	1	No No	No	
						Carichi termici	0.2	Si	No	
						Carlein termier	0.2	31	NO	
	SLE									
27) Quasi P1	Q.Perm.				1.00					
						Peso Proprio	1	Si	Si	
						QP Solai	1	Si	Si	
						QFissi Solai	1	Si	Si	
						QV Solai	1	No	No	
						QV SolaiPsi0	1	No	No	
						QV SolaiPsi1	1	No	No	
						QV SolaiPsi2	1	Si	Si	
						Tamponamenti(G2)	1	Si	Si	
						Neve	1	No	No	
						Vento X	1	No	No	
						Vento Y	1	No	No	
						Carichi termici	1	No	No	
	M 1.1									
28) SISMAX_SLD	Modale SLE	SpettroNT	1	0	1.00					
	SEE					Peso Proprio	1	Si	Si	
						QP Solai	1	Si	Si	
						QFissi Solai	1	Si	Si	
						QV Solai	1	No	No	
						QV SolaiPsi0	1	No	No	
						QV SolaiPsi1	1	No	No	
						QV SolaiPsi2	1	Si	Si	
						Tamponamenti(G2)	1	Si	Si	
						Neve	1	No	No	
						Vento X	1	No	No	
						Vento X	1	No	No	
						Carichi termici	1	No	No	
29) SISMAX_SLD	Modale	SpettroNT	1	90	1.00					
,	SLE	1	-			Peso Proprio	1	Si	Si	
l l										

Combinazione	Tipo	Spettro	F.Sisma	α	K mod	Cond.Carico	Fatt. cv.	Attiva	Massa	Fattore m.
						QFissi Solai	1	Si	Si	1
						QV Solai	1	No	No	1
						QV SolaiPsi0	1	No	No	1
						QV SolaiPsi1	1	No	No	1
						QV SolaiPsi2	1	Si	Si	1
						Tamponamenti(G2)	1	Si	Si	1
						Neve	1	No	No	1
						Vento X	1	No	No	1
						Vento Y	1	No	No	1
						Carichi termici	1	No	No	1

CODICE DI CALCOLO IMPIEGATO

dott. ing. Dario PICA
prof. ing. Paolo BISEGNA
dott. ing. Donato Sista
SOFT.LAB srl
via Borgo II - 82030 PONTE (BN)
tel. ++39 (824) 874392
fax ++39 (824) 874431
internet: http://www.soft.lab.it
e.mail: info@soft.lab.it
IperSpaceMax 7.1.0
Concesso in licenza a TRIFILIO GIUSEPPE codice utente
C0093032

Il modello di calcolo assunto è di tipo spaziale e l'analisi condotta è una Analisi Elastica Lineare, esso è fondamentalmente definito dalla posizione dei nodi collegati da elementi di tipo Beam o elementi di tipo shell a comportamento sia flessionale che membranale, l'elemento finito shell utilizzato è anche in grado di esprimere una rigidezza rotazionale in direzione ortogonale al piano dello shell.

L'analisi sismica utilizzata è l'analisi modale con Combinazione Quadratica Completa degli effetti del sisma. Il modello è stato analizzato sia per le combinazioni dei carichi verticali sia per le combinazioni di carico verticale e sisma. Un particolare chiarimento richiede la definizione delle masse nell'analisi sismica. Pur avendo considerato il modello con impalcati rigidi non si rende necessario calcolare il modello con la metodologia del MASTER-SLAVE, in quanto gli impalcati rigidi sono stati modellati con elementi di tipo shell a comportamento membranale in corrispondenza dei campi di solaio. Per ottenere tale modellazione il programma inserisce in automatico elementi di tipo shell a comportamento membranale in corrispondenza del campo di solaio intercluso tra una maglia di travi, la loro rigidezza membranale è sufficientemente alta da rendere il campo di solaio rigido nel proprio piano, ma tale da non mal condizionare la matrice di rigidezza della struttura. Qualora una maglia di travi non è collegata da solaio lo shell non viene inserito rendendo tale campo libero di deformarsi con il solo vincolo dato dalle travi della. La loro rigidezza flessionale è trascurabile rispetto a quella degli elementi che contornano il campo, per cui lo shell impone un vincolo orizzontale solo nel piano dell'impalcato tra i nodi collegati, quindi non è necessario definire preventivamente definire il centro di massa e momento d'inerzia delle masse, questo perché le masse sono trasferite direttamente nei nodi del modello (modello Lumped Mass) dal codice di calcolo, il metodo per calcolare le masse nei nodi può essere quello per aree di influenza, ma questa richiederebbe l'intervento diretto dell'operatore; il codice di calcolo utilizza una metodologia leggermente più raffinata per tener conto del fatto che su un elemento il carico portato non è uniforme, quindi il codice di calcolo considera i carichi presenti sull'asta che sono stati indicati come quelli che contribuiscono alla formazione della massa (tipicamente $G + \psi 2*Q$) e calcola le reazioni di incastro perfetto verticali, tali reazioni divise per l'accelerazione di gravità g danno il contributo dell'elemento alla massa del nodo, sommando i contributi di tutti gli elementi che convergono nel nodo si ottiene la massa complessiva nel nodo; per gli elementi shell invece si utilizza il metodo delle aree di influenza ossia in ognuno dei 3 oppure 4 nodi che definiscono lo shell si assegna $^{1}/_{3}$ oppure $^{1}/_{3}$ oppure $^{1}/_{4}$ dell'eventuale carico variabile ridotto, sommando su tutti gli shell che convergono nel nodo si ottiene la massa da assegnare al nodo.

VERIFICA DEGLI ELEMENTI STRUTTURALI

La verifiche di resistenza degli elementi è condotta considerando le sollecitazioni di calcolo ed imponendo che le resistenze siano superiori alle azioni. Gli elementi sono verificati e/o progettati applicando la gerarchia delle resistenze in particolare la gerarchia flessione-taglio per la verifica/progetto dell'elemento e la gerarchia pilastro-trave per la determinazione delle resistenze del pilastro. Le verifiche sono condotte secondo i seguenti criteri di verifica validi sia per lo SLU che per lo SLD, i criteri di verifica sono una raccolta di parametri che vengono usati in fase di verifica secondo le esigenze strutturali, ognuno di essi contiene i dati per tutti gli elementi, è sottointeso che nella verifica di un elemento (es. trave) non sono presi in considerazione i dati relativi agli altri elementi (ad es. se si verifica una trave non sono presi in considerazione i dati relativi a pilastri e shell, così come se si esegue una verifica agli SLU non sono presi in considerazione i dati relativi agli SLE). Ognuno di essi è identificato da un nome a scelta dell'operatore, per cui nei tabulati di verifica il nome del criterio ne identifica i parametri usati. Riguardo alle verifiche agli SLU le resistenze sono determinate in base a quanto specificato dalla norma attraverso il modello plastico-incrudente o elastico-perfettamente plastico, la verifica consiste nel verificare che assegnate le sollecitazioni di verifica le deformazioni massime nel calcestruzzo e nell'acciaio siano inferiori a quelle ultime cio' equivale ad affermare che nello spazio tridimensionale N,My,Mz il punto rappresentativo delle sollecitazioni è interno al dominio di resistenza della sezione. Le verifiche agli SLE riguardano le verifiche di:

- deformabilità degli impalcati con δ<=0.0100*h
- fessurazione
- tensioni in esercizio

Criteri di verifica

Criterio di verifica: CLS Muri		
Generici		
Resistenza caratteristica Rck	DaN/cmq	300.000
Tensione caratteristica snervamento acciaio fyk	DaN/cmq	4500.000
Deformazione unitaria ec0		0.002
Deformazione ultima ecu		0.0035
εfu (solo incrudimento)		0.01
Modulo elastico E acciaio	kN/m^2	2.10E08
Copriferro di calcolo	m	0.0
Copriferro di disegno	m	0.0
Coefficiente di sicurezza γCls		1.5
Coefficiente di sicurezza γAcc		1.15
Riduzione fcd calcestruzzo		0.85
Usa staffe minime di normativa in assenza di sisma		Si
Usa staffe minime di normativa in presenza di sisma		Si
Generici N.T.		
Inclinazione bielle compresse $cotg(\theta)$		1.00
Modello acciaio		Elasto-plastico
Elemento esistente		No
Generici D.M. 96 T.A.		
Tensione ammissibile σc	DaN/cmq	97.500
Tensione ammissibile σc in trazione	DaN/cmq	21.833
Tensione ammissibile oc acciaio	DaN/cmq	2600.000
Tensione tangenziale ammissibile τc0	DaN/cmq	6.000
Tensione tangenziale massima τc1	DaN/cmq	18.286
Coefficiente di omogeneizzazione n		15
Coefficiente di omogeneizzazione n in trazione		0.5
Sezione interamente reagente		No

Fessurazioni		
Verifica a decompressione		No
Verifica formazione fessure		No
Verifica aperture fessure		Si
Classe di esposizione		X0
Tipo armatura		Poco sensibile
Combinazione Rara		No
Combinazione QP		Si
W ammissibile Combinazione QP	mm	0.300
Combinazione Freq.		Si
W ammissibile Combinazione Freq.	mm	0.400
Valore caratteristico apertura fessure wk(*wm)		1.7
fc efficace	DaN/cmq	2599.2
Coefficiente di breve o lunga durata kt		0.40
Coefficiente di aderenza k1		0.80
Tensioni ammissibili di esercizio		
Verifica Combinazione Rara		Si
Tensione ammissibile σCls	DaN/cmq	149.400
Tensione ammissibile σAcciaio	DaN/cmq	3600.000
Verifica Combinazione QP		Si
Tensione ammissibile σCls	DaN/cmq	112.050
Tensione ammissibile σAcciaio	DaN/cmq	3600.000
Verifica Combinazione Freq.	•	No
Coeffcienti di omogeneizzazione	,	,
Acciaio - Cls compresso		15
Cls teso - Cls compresso		0.5
Armatura muri	,	,
Minima percentuale armatura rispetto al Cls in direzione X	%	0.125
Minima percentuale armatura rispetto al Cls in direzione Y	%	0.125
Massima percentuale armatura rispetto al Cls in direzione X	%	2
Massima percentuale armatura rispetto al Cls in direzione Y	%	2
Verifica muri	·	
Step incremento armatura	cmq	0.01
Verifica muri come pareti		No

Criterio di verifica: Legno Pressofl		
Verifiche		
Resistenza di progetto fyd	kN/m^2	14000.0
Tensione massima ammissibile σ amm	kN/m^2	10000.0
Norma		DIN
Tipo di legno		Resinoso
Escludi momento Mz		Si
Verifiche N.T. SLU	·	
Tipologia legno		Lamellare
Classe di resistenza		GL24h
fmk	DaN/cmq	240.000
ft0k	DaN/cmq	165.000
ft90k	DaN/cmq	4.000
fc0k	DaN/cmq	240.000
fc90k	DaN/cmq	27.000
fvk	DaN/cmq	27.000
E0mean	DaN/cmq	116000.000
E0,05	DaN/cmq	94000.000
E90mean	DaN/cmq	3900.000
Gmean	DaN/cmq	7200.000
ρk	kN/m^3	3.8
γM		1.45
Coefficiente di sicurezza parziale γM		1.45
Coefficiente moltiplicativo per calcolo lunghezza efficace keff		0.9
Coefficiente moltiplicativo per calcolo sezione netta knet		1
Tinalogia varifiaa		Tenso-Pressoflession
Tipologia verifica		e
Verifica a trazione o compressione parallela alla fibratura		No
Verifica a tensoflessione o pressoflessione		Si
Verifica a flessione		No

Verifica a taglio	Si
Verifica a torsione	No
Verifica a taglio e torsione	No
Verifiche N.T. SLE	
Verifica degli elementi inflessi	No

Verifiche		
Resistenza di progetto fyd	kN/m^2	14000.0
Tensione massima ammissibile σ amm	kN/m^2	10000.0
Norma		DIN
Tipo di legno		Resinoso
Escludi momento Mz		Si
Verifiche N.T. SLU		
Tipologia legno		Lamellare
Classe di resistenza		GL24h
fmk	DaN/cmq	240.000
ft0k	DaN/cmq	165.000
ft90k	DaN/cmq	4.000
fc0k	DaN/cmq	240.000
fc90k	DaN/cmq	27.000
fvk	DaN/cmq	27.000
E0mean	DaN/cmq	116000.000
E0,05	DaN/cmq	94000.000
E90mean	DaN/cmq	3900.000
Gmean	DaN/cmq	7200.000
ρk	kN/m^3	3.8
γM		1.45
Coefficiente di sicurezza parziale γM		1.45
Coefficiente moltiplicativo per calcolo lunghezza efficace keff		0.9
Coefficiente moltiplicativo per calcolo sezione netta knet		1
Tipologia verifica		Arcareccio
Verifica a trazione o compressione parallela alla fibratura		No
Verifica a tensoflessione o pressoflessione		No
Verifica a flessione		Si
Verifica a taglio		Si
Verifica a torsione		No
Verifica a taglio e torsione		No
Verifiche N.T. SLE		
Verifica degli elementi inflessi		Si
Controfreccia u0	m	0.00
Coefficiente kdef		0.8
Limite freccia finale	m	L/250.00
Limite freccia finale dovuta ai soli carichi variabili	m	L/200.00
Verifica freccia istantanea		Si
Limite freccia istantanea dovuta ai soli carichi variabili	m	L/300.00

VALIDAZIONE DEL CALCOLO-INFORMAZIONI SULL'ELABORAZIONE

INFORMAZIONI ELABORAZIONE

Il calcolo automatico è stato eseguito su un elaboratore con le seguenti caratteristiche:

Tipo: Intel Pentium

Capacità di memoria: 2047 MB

Unità di memoria di massa: Disco C 186.30 GB

Unità periferiche:

Sistema operativo e sua versione: Microsoft Windows NT 6.2 (Build: 9200)

La valutazione sulla correttezza dei dati in ingresso e sulla accuratezza dei risultati è stata effettuata sia mediante le visualizzazioni grafiche del post processore sia mediante il controllo dei tabulati numerici. La verifica che la soluzione ottenuta non sia viziata da errori di tipo numerico, legati all'algoritmo risolutivo ed alle caratteristiche dell'elaboratore, è stata effettuata considerando che il numero di cifre significative utilizzate nei procedimenti numerici è 16, e che all'interno della matrice di rigidezza il rapporto tra il pivot massimo e minimo è: 5.809945e+003. Tale valore è accettabile quando risulta minore di 10 elevato al numero di cifre significative. Nel caso dell'elaborazione in oggetto si ha:

Max/Min=5.809945e+003<1.000000e+016

Si riporta la tabella relativa alle statistiche sulla matrice di rigidezza

Risultati Analisi Dinamica - Statistiche matrice di rigidezza

Scenario di calcolo : Set_NT_SLV_SLD_A2_STR/GEO

Minimo della diag.	2.168844e+005
Massimo della diag.	1.260086e+009
Rapporto Max/Min	5.809945e+003
Media della diag.	7.449684e+008
Densita'	1.137690e+001

Pertanto i risultati si ritengono accettabili per quanto riguarda la correttezza del calcolo automatico.

Il Progettista

Comune di Santa Maria del Cedro

Provincia di Cosenza

<u>PROGETTO:</u> REALIZZAZIONE NUVO EDIFICIO PUBBLICO, DESTINATO A SCUOLA CON STRUTTURA IN LEGNO NEL COMUNE DI SANTA MARIA DEL CEDRO (CS). CLASSE D'USO DELLA COSTRUZIONE 3.

<u>PRATICA:</u> REALIZZAZIONE DEGLI INTERVENTI DIRETTI ALL'AMPLIAMENTO DELLA SCUOLA ELEMENTARE UBICATA IN VIA ORSOMARSO DEL COMUNE DI SANTA MARIA DEL CEDRO FRAZIONE MARCELLINA.

II Committente

Comune di Santa Maria del Cedro

via Nazionale n.16 87020, Santa Maria del Cedro (CS) Tel. 0.985/5727 - C.F. 00433700788

Il Responsabile del Servizio

Dott. Ing. Giuseppe Durante

I Progettisti e DD.LL.

Dott. Geom. Giuseppe Riccetti

Geom. Carmine Covucci

Data: novembre 2016

Tavola : Integrazione

1

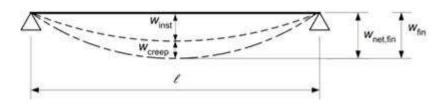
Elaborato:

Integrazione alla Relazione di Calcolo Verifica agli SLE di deformazione del legno ai sensi del § 4.4.7 del D.M. 14/01/2008 e circ. n.617/C.SS.LL.PP. del 02/02/2009

Scala:

Visti e Pareri :

Aggiornamenti:


Verifica delle deformazioni a breve e a lunga durata in riferimento agli stati limite di esercizio

(NTC 2008 (4.4.7) CNR DT 206/2007)

Le Norme Tecniche operano una distinzione tra la deformazione istantanea (w_{inst}) e la deformazione a lungo termine (w_{fin}) o deformazione finale.

La deformazione finale (w_{fin}) è data dalla somma della deformazione istantanea (w_{inst}), elastica e reversibile, e della deformazione differita (w_{creep}), plastica ed irreversibile, originata dai carichi permanenti a causa della viscosità (creeping) e dell'umidità (Classe di servizio) $\mathbf{W}_{fin} = \mathbf{W}_{inst} + \mathbf{W}_{creep}$

CNR DT 206/2007 6.4.1

la deformazione iniziale (istantanea), si calcola con riferimento alla combinazione di carico rara la deformazione differita calcolata si calcola con riferimento alla combinazione di carico quasi permanente (6.2.a)

6.4 - STATI LIMITE D'ESERCIZIO 6.4.1 - Deformazioni istantanee e finali

Le deformazioni di una struttura, dovute agli effetti delle azioni, degli stati di coazione, delle variazioni di umidità e degli scorrimenti nelle unioni, devono essere contenute entro limiti accettabili, in relazione sia ai danni che possono essere indotti ai materiali di rivestimento, ai pavimenti, alle tramezzature e, più in generale, alle finiture, sia ai requisiti estetici ed alla funzionalità dell'opera. In generale, nella valutazione delle deformazioni delle strutture si deve tener conto della deformabilità tagliante e di quella dei collegamenti. Considerando il particolare comportamento reologico del legno e dei materiali derivati dal legno, si devono valutare sia la deformazione istantanea sia la deformazione a lungo termine. La deformazione istantanea, provocata da una certa condizione di carico, si calcola usando il valore medio dei moduli di elasticità normale e tangenziale del materiale per le membrature ed il valore istantaneo del modulo di scorrimento (Kser) per le unioni. Il modulo di scorrimento istantaneo, Kser, delle unioni può essere determinato mediante prove sperimentali secondo la EN 26891 (dove ks corrisponde a Kser) o può essere calcolato introducendo i parametri caratterizzanti il materiale e l'unione come riportato al punto 6.4.2 -. La deformazione a lungo termine può essere calcolata utilizzando i valori medi dei moduli elastici ridotti opportunamente mediante il fattore 1/(1+ kdef) per le membrature e utilizzando un valore ridotto con lo stesso fattore del modulo di scorrimento dei collegamenti, dove kdef è il coefficiente che tiene conto dell'aumento di deformazione nel tempo dovuto all'effetto combinato della viscosità e dell'umidità. Per esso si possono utilizzare i valori riportati in Appendice B -Tabella 17-1. Pertanto per il calcolo della deformazione iniziale (uin) occorre valutare la deformazione istantanea con riferimento alla combinazione di carico rara. Per il calcolo della deformazione finale (ufin) occorre valutare la deformazione a lungo termine per la combinazione di carico quasi permanente e sommare a quest'ultima la deformazione istantanea dovuta alla sola aliquota mancante, nella combinazione quasi permanente, del carico accidentale prevalente (da intendersi come il carico variabile di base della combinazione rara). La deformazione finale ufin, si può pertanto valutare come:

ufin = u1,in (1+kdef) + u21,in (1+ 21 kdef) + Σ (i=2...n) 2i u2i,in (1+kdef) (6.2) dove:

u1,in è la deformazione istantanea del carico permanente u21,in è la deformazione istantanea del carico accidentale prevalente u2i, in è la deformazione istantanea della i-esima azione variabile della combinazione In via semplificata la deformazione finale ufin, relativa ad una certa condizione di carico, si può valutare come segue:

ufin = uin+udif (6.2.a)

dove

uin è la deformazione iniziale (istantanea), calcolata con riferimento alla combinazione di carico rara; udif è la deformazione differita che può essere valutata attraverso la relazione:

 K_{def} per la struttura in oggetto, è pari a 0.8, (classe di servizio 2), benché si potrebbe optare anche per classe di servizio 1

Per il calcolo della deformazione a lungo termine sarà necessario ridurre il modulo di elasticità, moltiplicandolo per 1/(1+Kdef)

Per la struttura in oggetto, i carichi sono

Peso Proprio	18 Kg/mq	0.18 KN/mq
Carico fisso	150 Kg/mq	1.50 KN/mq
Carico Variabile	50 Kg/mq	0.5 KN/mq
Carico Neve	50 Kg/mq	0.5 KN/mq

Se si considera l'interasse tra le travi pari a 1.42 m, si otterrà un carico distribuito pari a

Peso Proprio	18 Kg/mq	0.18 KN/mq	0.2556 KN/m	G1
Carico fisso	150 Kg/mq	1.50 KN/mq	2.13 KN/m	G2
Carico Variabile	50 Kg/mq	0.5 KN/mq	0.71 KN/m	Q1
Carico Neve	50 Kg/mq	0.5 KN/mq	0.71 KN/m	Q2

Considerando una trave appoggiata -appoggiata con un carico distribuito q, la deformazione sarà

$$W = \frac{5}{384} \frac{q l^2}{EI}$$

Dove

q carico distribuito per unità di lunghezza

E modulo di elasticità (per il materiale in esame, legno lamellare GL24 E = 11600 N/mmq)

I momento di inerzia, pari a $\frac{bh^3}{12}$, nel nostro caso la trave ha dimensioni b= 160 mm, h= 320 mm

Per la deformazione a lungo termine il valore E_{mod} sarà valutato come 11600*1/(1+0.8)=6440 N/mmq

Considerando i carichi, la combinazione rara sarà (locali soggetti ad affollamento Ψ =0.7)

G1+G2+0.7*Q1+0.7*Q2 = 0.18 KN/mq + 1.5 KN/mq + 0.7*0.5 KN/mq + 0.7*0.5 KN/mq = 2.38 KN/mq

la combinazione quasi permanente sarà (locali soggetti ad affollamento Ψ =0.6)

 $G1+G2+0.6*Q1+0.6*Q2 = 0.18 \text{ KN/mq} + 1.5 \text{ KN/mq} + 0.6*0.5 \text{ KN/mq} + 0.6*0.5 \text{ KN/mq} = 2.28 \text{ KN/$

Per considerare il carico al metro lineare, sarà necessario moltiplicare tali carichi per l'interasse 1.42 m

Tabella 1: combinazioni dei carichi e calcolo dei carichi per metro lineare

		comb rara =G1+G2+0.7Q1+0.7Q2							
		Kg/mq	KN/mq	Psi	Q*psi (KN/mq)	interasse (m)	q (Kg/m)		
peso proprio	G1	18	0.18	1	0.18				
carico fisso	G2	150	1.5	1	1.5				
carico variabile	Q1	50	0.5	0.7	0.35				
carico neve	Q2	50	0.5	0.7	0.35	_			
					Tot 2.38	1.42	3.38		
					b quasi perm +G2+0.6Q1+0.6Q2				
		Kg/mq	KN/mq	Psi	Q*psi (KN/mq)	interasse (m)	q (Kg/m)		
peso proprio	G1	18	0.18	1	0.18				
carico fisso	G2	150	1.5	1	1.5	1.5			
carico variabile	Q1	50	0.5	0.6	0.3				
carico neve	Q2	50	0.5	0.6	0.3	•			
					Tot 2.28	1.42	3.24		

In definitiva si otterrà

$$W_{\text{iniziale}} = \frac{5}{384} \frac{q l^2}{EI} = 3.56 \text{ mm}$$

$$\mathbf{W}_{\text{diff}} = \frac{5}{384} \frac{ql^2}{Erid\ I} = 6.14 \text{ mm}$$

Con E = 11600 KN/mmq E _{rid} = 11600
$$\frac{1}{1+0.8}$$
 = 6.44 KN/mmq I= 436906667 mm

La deformazione totale sarà pari alla somma delle due aliquote

$$W_{fin} = W_{in} + W_{diff} = 3.56 \text{ mm} + 6.14 \text{ mm} = \underline{9.71 \text{ mm}}$$
, inferiore al valore $\frac{l}{250}$ (=\frac{4500}{250}) = 18 mm

Un altro approccio può avvenire analizzando i tabulati di calcolo, osservando che il momento massimo riscontrabile sulle travi, per stati limite di esercizio è pari a 13 KN*m, considerando il carico distribuito, è equivalente a $\frac{q l^2}{8}$, da cui $q = \frac{M*8}{l^2} = 5.14$ KN/m con una <u>deformazione iniziale pari 5.41 mm</u> e una <u>deformazione differita pari a 9.74 mm</u>, per una deformazione <u>finale pari a 15.15 mm</u>, inferiore a 18 mm.

Risultati Analisi Dinamica - Sollecitazioni massime - Inviluppi - Travi - S.L.E

Scenario di calcolo : Set_NT_SLV_SLD_A2_STR/GEO

Asta	N.in.	N	Ту	Tz	Mt	My	Mz
	N.fin.	kN	kN	kN	kN*m	kN*m	kN*m
1	100	0.13(29-II-1)	-1.14(28-I-1)	-1.43(29-II-1)	-0.69(29-II-1)	0.78(29-II-1)	-0.68(29-II-1)
	200	0.13(29-II-1)	-1.14(28-I-1)	-1.18(29-II-1)	-0.69(29-II-1)	0.04(28-II-1)	-0.27(28-II-1)
2	1175	-1.32(28-II-1)	0.39(29-II-1)	-2.30(29-I-1)	0.40(29-I-1)	1.27(29-I-1)	0.23(28-II-1)
	1275	-1.32(28-II-1)	0.39(29-II-1)	-2.05(29-I-1)	0.40(29-I-1)	-0.03(29-I-1)	0.19(29-I-1)
7	1071	-2.46(29-II-1)	-4.04(29-II-1)	-6.73(28-II-1)	-1.86(29-II-1)	3.83(28-II-1)	-3.06(29-II-1)
	1077	-2.46(29-II-1)	-4.04(29-II-1)	-6.15(28-II-1)	-1.86(29-II-1)	-6.18(15)	2.69(29-II-1)
8	1073	-9.68(29-II-1)	-1.91(28-II-1)	-8.43(28-II-1)	-0.57(29-II-1)	8.36(28-II-1)	-1.35(28-II-1)
	1080	-9.68(29-II-1)	-1.91(28-II-1)	-7.84(28-II-1)	-0.57(29-II-1)	-3.97(15)	1.37(28-II-1)
9	1075	-3.75(29-I-1)	4.44(29-II-1)	-9.89(28-I-1)	-1.39(14)	9.55(28-I-1)	3.27(29-II-1)
	1083	-3.75(29-I-1)	4.44(29-II-1)	-9.31(28-I-1)	-1.39(14)	-5.52(14)	-3.06(29-II-1)
10	1073	-0.65(15)	-1.37(28-I-1)	-7.81(29-II-1)	-0.12(28-I-1)	6.66(29-II-1)	-2.98(28-I-1)
	1092	0.53(29-II-1)	-1.37(28-I-1)	10.24(14)	-0.12(28-I-1)	13.00(29-I-1)	3.11(28-I-1)
11	1077	-6.55(29-II-1)	-2.50(29-II-1)	9.27(28-I-1)	-0.30(29-I-1)	-6.36(15)	-1.55(29-II-1)
	1078	-6.55(29-II-1)	-2.50(29-II-1)	9.85(28-I-1)	-0.30(29-I-1)	9.28(28-I-1)	2.02(29-II-1)
12	1078	-8.48(29-II-1)	1.93(28-I-1)	-9.46(28-II-1)	0.67(29-I-1)	9.84(28-II-1)	1.35(28-I-1)
	1079	-8.48(29-II-1)	1.93(28-I-1)	-8.87(28-II-1)	0.67(29-I-1)	-4.25(15)	-1.48(29-I-1)
13	1080	-9.35(29-II-1)	-1.98(28-II-1)	8.96(28-I-1)	-0.66(29-I-1)	-4.38(15)	-1.59(29-I-1)
	1081	-9.35(29-II-1)	-1.98(28-II-1)	9.55(28-I-1)	-0.66(29-I-1)	9.85(28-I-1)	1.38(28-II-1)
14	1081	-6.61(29-II-1)	3.26(29-II-1)	-9.79(28-II-1)	0.32(29-I-1)	9.13(28-II-1)	2.65(29-II-1)
	1082	-6.61(29-II-1)	3.26(29-II-1)	-9.21(28-II-1)	0.32(29-I-1)	-6.44(14)	-2.00(29-II-1)
15	1082	-1.81(29-II-1)	5.00(29-II-1)	6.34(28-I-1)	1.65(29-II-1)	-6.38(15)	3.45(29-II-1)
	1072	-1.81(29-II-1)	5.00(29-II-1)	6.93(28-I-1)	1.65(29-II-1)	3.92(28-I-1)	-3.68(29-II-1)
16	1083	-7.81(29-I-1)	2.72(29-II-1)	10.53(28-II-1)	-0.51(29-II-1)	-5.53(14)	1.60(29-II-1)
10	1084	-7.81(29-I-1)	2.72(29-II-1)	11.11(28-II-1)	-0.51(29-II-1)	11.17(28-II-1)	-2.27(29-II-1)
17	1084	-10.47(29-I-1)	-1.44(28-I-1)	-10.40(28-I-1)	0.52(29-II-1)	10.96(28-I-1)	-1.08(28-I-1)
	1085	-10.47(29-I-1)	-1.44(28-I-1)	-9.82(28-I-1)	0.52(29-II-1)	-4.57(14)	1.24(29-I-1)
18	1085	-10.62(29-I-1)	-1.45(28-I-1)	9.11(28-II-1)	0.54(14)	-4.18(14)	-1.02(29-II-1)
10	1076	-10.62(29-I-1)	-1.45(28-I-1)	9.69(28-II-1)	0.54(14)	10.21(28-II-1)	1.05(28-I-1)
19	1086	-8.83(29-I-1)	2.17(29-I-1)	10.16(28-II-1)	-0.58(29-II-1)	-4.30(14)	1.80(29-I-1)
	1087	-8.83(29-I-1)	2.17(29-I-1)	10.74(28-II-1)	-0.58(29-II-1)	11.80(28-II-1)	-1.29(29-I-1)
20	1087	-6.57(29-I-1)	-2.97(29-II-1)	-10.83(28-I-1)	0.24(29-II-1)	10.85(28-I-1)	-2.35(29-II-1)
	1088	-6.57(29-I-1)	-2.97(29-II-1)	-10.25(28-I-1)	0.24(29-II-1)	-6.49(14)	1.89(29-II-1)
21	1088	-2.29(29-I-1)	-4.53(29-II-1)	6.68(28-II-1)	1.68(29-I-1)	-6.32(14)	3.05(29-I-1)
	1074	-2.29(29-I-1)	-4.53(29-II-1)	7.27(28-II-1)	1.68(29-I-1)	4.54(28-II-1)	3.45(29-II-1)
26	1093	-3.52(29-II-1)	0.84(28-I-1)	-7.91(29-II-1)	-0.72(14)	9.97(29-II-1)	2.02(28-I-1)
	1074	-3.04(29-II-1)	0.84(28-I-1)	6.96(29-I-1)	-0.72(14)	9.54(29-I-1)	-1.81(28-I-1)
27	1094	-3.16(29-I-1)	2.75(28-I-1)	-8.46(29-II-1)	1.85(15)	7.68(29-II-1)	-3.50(28-II-1)
	0	3.07(29-II-1)	2.75(28-I-1)	8.20(29-I-1)	1.85(15)	7.89(29-I-1)	-2.18(28-I-1)
28	1094	-5.84(28-I-1)	-6.11(29-I-1)	-21.04(14)	1.55(29-II-1)	10.62(28-I-1)	-4.85(29-I-1)
	1095	-5.84(28-I-1)	-6.11(29-I-1)	-20.13(14)	1.55(29-II-1)	-23.17(15)	3.86(29-I-1)
29	1095	-3.52(28-I-1)	-2.14(29-I-1)	-3.61(28-I-1)	0.49(29-II-1)	-21.94(15)	0.80(28-I-1)
	1096	-3.52(28-I-1)	-2.14(29-I-1)	-2.70(28-I-1)	0.49(29-II-1)	-24.61(14)	2.90(29-I-1)
30	1096	-1.89(29-I-1)	1.73(29-II-1)	14.69(15)	-0.77(29-II-1)	-24.95(14)	0.96(28-II-1)
	1097	-1.89(29-I-1)	1.73(29-II-1)	15.60(15)	-0.77(29-II-1)	-3.63(28-I-1)	-2.44(29-II-1)
31	1097	-2.40(28-II-1)	2.08(29-I-1)	34.90(15)	-2.63(29-II-1)	-4.75(14)	-1.92(29-II-1)
	1092	-2.40(28-II-1)	2.08(29-I-1)	35.81(15)	-2.63(29-II-1)	45.64(15)	-1.14(29-I-1)
32	1098	-2.28(28-II-1)	-2.08(29-II-1)	-15.77(14)	0.83(29-II-1)	-3.72(28-II-1)	-2.37(29-II-1)
	1099	-2.28(28-II-1)	-2.08(29-II-1)	-14.86(14)	0.83(29-II-1)	-25.36(14)	0.95(28-II-1)
33	1099	-3.39(28-II-1)	2.13(29-I-1)	2.46(28-II-1)	-0.38(29-II-1)	-25.03(14)	2.47(29-I-1)
	1100	-3.39(28-II-1)	2.13(29-I-1)	3.37(28-II-1)	-0.38(29-II-1)	-22.70(14)	0.87(29-II-1)
34	1100	-4.28(28-II-1)	4.45(29-I-1)	20.11(15)	1.84(29-I-1)	-23.99(14)	3.00(29-I-1)
	1093	-4.28(28-II-1)	4.45(29-I-1)	21.02(15)	1.84(29-I-1)	10.05(28-II-1)	-3.35(29-I-1)
35	1083	1.07(29-I-1)	-0.82(28-II-1)	-8.63(14)	0.61(15)	4.39(14)	-1.79(28-II-1)
	1095	-1.04(29-II-1)	-0.82(28-II-1)	9.00(15)	0.61(15)	5.22(14)	1.92(28-II-1)
36	1095	1.11(28-II-1)	-1.42(28-I-1)	-8.78(14)	-0.62(15)	4.93(14)	-3.21(28-I-1)
	1082	-1.16(28-I-1)	-1.42(28-I-1)	8.47(15)	-0.62(15)	5.58(29-II-1)	3.10(28-I-1)
37	1084	0.67(29-II-1)	0.85(28-I-1)	-9.46(14)	-0.38(28-II-1)	7.12(29-I-1)	1.88(28-I-1)
		` /	` /	\ /	` /	` /	` /

Asta	N.in.	N	Ty	Tz	Mt	My	Mz
Tistu	1096	-1.28(29-I-1)	0.85(28-I-1)	8.17(15)	-0.38(28-II-1)	3.12(15)	-1.99(28-I-1)
38	1096	-2.87(29-II-1)	1.38(28-II-1)	-7.95(14)	0.34(28-II-1)	3.01(14)	3.15(28-II-1)
	1081	-3.57(29-II-1)	1.38(28-II-1)	9.30(15)	0.34(28-II-1)	7.94(29-II-1)	-3.01(28-II-1)
39	1085	0.68(29-I-1)	0.87(28-I-1)	-7.91(14)	-0.68(14)	3.35(29-I-1)	1.91(28-I-1)
	1097	-0.85(29-II-1)	0.87(28-I-1)	9.72(15)	-0.68(14)	6.83(15)	-2.05(28-I-1)
40	1097	1.16(29-I-1)	1.38(28-II-1)	-9.56(14)	0.70(14)	6.83(14)	3.13(28-II-1)
41	1080	-1.11(29-II-1)	1.38(28-II-1)	7.68(15)	0.70(14)	3.66(29-II-1)	-3.00(28-II-1)
41	1086 1098	0.74(29-I-1) -0.92(29-II-1)	-0.87(28-II-1) -0.87(28-II-1)	-7.91(14)	0.70(15) 0.70(15)	3.32(29-I-1) 6.75(15)	-1.93(28-II-1) 2.06(28-II-1)
42	1098	1.04(29-I-1)	-1.38(28-I-1)	9.72(15) -9.57(14)	-0.72(15)	6.79(14)	-3.13(28-I-1)
72	1079	-0.99(29-II-1)	-1.38(28-I-1)	7.68(15)	-0.72(15)	3.61(29-II-1)	3.00(28-I-1)
43	1088	0.82(28-I-1)	0.85(28-I-1)	-8.55(14)	-0.64(14)	5.19(29-I-1)	1.89(28-I-1)
-	1100	-0.87(28-II-1)	0.85(28-I-1)	9.09(15)	-0.64(14)	5.22(15)	-2.00(29-II-1)
44	1100	0.87(29-I-1)	-1.37(28-I-1)	-8.92(14)	0.65(14)	5.24(14)	-3.12(28-I-1)
	1077	-0.95(29-II-1)	-1.37(28-I-1)	8.33(15)	0.65(14)	5.64(29-II-1)	3.00(28-I-1)
45	1087	0.47(29-II-1)	-0.87(28-II-1)	-9.51(14)	0.39(28-I-1)	7.40(29-I-1)	-1.93(28-II-1)
	1099	-1.08(29-I-1)	-0.87(28-II-1)	8.13(15)	0.39(28-I-1)	2.94(15)	2.04(28-II-1)
46	1099	-2.71(29-II-1)	-1.37(28-I-1)	-7.93(14)	-0.33(28-I-1)	2.92(14)	-3.12(28-I-1)
40	1078	-3.41(29-II-1)	-1.37(28-I-1)	9.33(15)	-0.33(28-I-1)	8.09(29-II-1)	2.99(28-I-1)
48	1088 1112	-0.29(29-II-1) -0.12(29-II-1)	4.97(29-II-1) 4.97(29-II-1)	-4.63(14) -1.75(29-I-1)	-0.54(29-I-1) -0.54(29-I-1)	3.38(29-I-1) 0.22(29-I-1)	3.06(29-II-1) -1.91(29-II-1)
49	1087	-0.12(29-II-1) -0.34(29-II-1)	-3.46(29-I-1)	-1./3(29-1-1)	0.50(28-II-1)	3.66(15)	-1.91(29-II-1) -2.09(29-I-1)
77	1111	-0.18(29-II-1)	-3.46(29-I-1)	-2.18(29-II-1)	0.50(28-II-1)	-0.05(29-I-1)	1.38(29-I-1)
50	1086	-0.22(14)	-1.71(29-I-1)	-4.03(14)	0.35(28-I-1)	2.40(29-I-1)	-1.02(29-I-1)
	1110	-0.05(29-I-1)	-1.71(29-I-1)	-0.87(29-I-1)	0.35(28-I-1)	0.12(29-I-1)	0.69(29-I-1)
51	1085	-0.24(29-I-1)	0.59(28-II-1)	-4.18(14)	-0.36(28-II-1)	2.53(29-I-1)	0.35(28-II-1)
	1109	-0.07(29-I-1)	0.59(28-II-1)	-1.02(29-I-1)	-0.36(28-II-1)	0.10(29-I-1)	-0.30(28-II-1)
52	1084	-0.29(15)	2.81(29-I-1)	-5.51(15)	-0.52(28-I-1)	3.65(29-II-1)	1.70(29-I-1)
	1108	-0.09(17)	2.81(29-I-1)	-2.14(29-II-1)	-0.52(28-I-1)	0.10(29-II-1)	-1.11(29-I-1)
53	1083	-0.29(29-II-1)	-5.05(29-II-1)	-4.87(14)	0.59(15)	3.13(14)	-3.14(29-II-1)
54	1107 1074	-0.12(29-II-1) -1.93(29-II-1)	-5.05(29-II-1) 2.90(29-II-1)	-1.33(29-I-1) -2.48(29-II-1)	0.59(15) -0.84(29-I-1)	0.19(14) 1.51(29-II-1)	1.91(29-II-1) 1.79(29-II-1)
34	1104	-1.93(29-II-1) -1.81(29-II-1)	2.90(29-II-1) 2.90(29-II-1)	0.69(29-I-1)	-0.84(29-I-1)	-0.23(29-I-1)	-1.11(29-II-1)
55	1075	-1.65(29-II-1)	-4.05(29-II-1)	-3.86(14)	0.91(28-II-1)	1.69(29-I-1)	-2.47(29-II-1)
33	1105	-1.46(29-II-1)	-4.05(29-II-1)	0.48(29-II-1)	0.91(28-II-1)	-0.17(15)	1.59(29-II-1)
56	1076	-0.95(29-II-1)	0.84(29-II-1)	-3.96(15)	0.58(28-II-1)	1.86(15)	0.51(29-II-1)
	1106	-0.79(29-II-1)	0.84(29-II-1)	-0.52(29-II-1)	0.58(28-II-1)	-0.17(14)	-0.33(29-II-1)
71	1071	1.69(29-II-1)	2.86(29-II-1)	-2.65(29-I-1)	0.94(29-II-1)	1.70(29-I-1)	1.83(29-II-1)
	1114	1.59(29-II-1)	2.86(29-II-1)	0.88(29-II-1)	0.94(29-II-1)	-0.25(29-II-1)	-1.03(29-II-1)
72	1077	0.22(29-I-1)	4.66(29-II-1)	-4.75(29-II-1)	0.58(29-II-1)	3.60(29-II-1)	2.90(29-II-1)
72	1115		4.66(29-II-1)		0.58(29-II-1)	0.25(29-II-1)	
73	1078 1116	0.33(29-I-1) 0.19(29-I-1)	-3.15(29-I-1) -3.15(29-I-1)	-5.62(14) -2.42(29-I-1)	-0.33(28-II-1) -0.33(28-II-1)	3.89(29-I-1) 0.06(29-I-1)	-1.92(29-I-1) 1.23(29-I-1)
74	1079	0.19(29-I-1) 0.36(29-I-1)	-1.39(29-I-1)	-4.00(15)	-0.36(28-I-1)	2.54(29-II-1)	-0.85(29-I-1)
/	1117	-0.24(29-II-1)	-1.39(29-I-1)	-1.00(29-II-1)	-0.36(28-I-1)	0.13(29-II-1)	0.54(29-I-1)
75	1073	0.72(29-II-1)	0.55(28-I-1)	-3.97(14)	-0.41(28-II-1)	2.07(29-I-1)	0.45(28-I-1)
	1119	0.58(29-II-1)	0.55(28-I-1)	-0.77(29-I-1)	-0.41(28-II-1)	-0.17(15)	-0.26(28-I-1)
76	1080	0.41(29-I-1)	0.79(29-I-1)	-4.16(15)	0.37(28-II-1)	2.67(29-II-1)	0.46(28-I-1)
	1120	0.27(29-I-1)	0.79(29-I-1)	-1.15(29-II-1)	0.37(28-II-1)	0.12(29-II-1)	-0.34(29-I-1)
77	1081	0.46(29-I-1)	3.29(29-I-1)	-5.64(14)	0.34(28-I-1)	3.86(29-I-1)	1.97(29-I-1)
50	1121	0.32(29-I-1)	3.29(29-I-1)	-2.38(29-I-1)	0.34(28-I-1)	0.07(29-I-1)	-1.32(29-I-1)
78	1082 1122	0.22(28-I-1) -0.09(28-II-1)	-5.54(29-II-1) -5.54(29-II-1)	-4.61(15) -1.78(29-II-1)	-0.56(29-II-1) -0.56(29-II-1)	3.42(29-II-1) 0.23(29-II-1)	-3.43(29-II-1)
79	1072	2.02(29-II-1)	-3.54(29-II-1) -2.66(29-II-1)	-1./8(29-II-1) -2.41(29-I-1)	-0.56(29-II-1) -0.79(29-II-1)	1.70(29-I-1)	2.12(29-II-1) -1.88(29-II-1)
13	1123	1.94(29-II-1)	-2.66(29-II-1)	0.70(29-II-1)	-0.79(29-II-1)	-0.22(29-II-1)	1.20(29-II-1)
80	1092	-3.21(29-II-1)	-0.88(28-II-1)	-10.27(15)	0.18(28-I-1)	12.48(29-II-1)	-2.06(28-II-1)
	1076	-2.51(29-II-1)	-0.88(28-II-1)	7.67(29-I-1)	0.18(28-I-1)	5.96(29-I-1)	1.95(28-II-1)
82	1093	-1.87(28-I-1)	1.29(28-II-1)	-7.74(29-I-1)	0.74(14)	10.46(29-I-1)	2.96(28-II-1)
	1071	-2.27(28-I-1)	1.29(28-II-1)	6.65(29-II-1)	0.74(14)	10.50(29-II-1)	-2.77(28-II-1)
83	1079	-9.63(29-II-1)	1.92(28-I-1)	7.73(28-I-1)	0.61(29-II-1)	-3.81(15)	1.39(28-I-1)
	1073	-9.63(29-II-1)	1.92(28-I-1)	8.31(28-I-1)	0.61(29-II-1)	8.34(28-I-1)	-1.34(28-I-1)
84	1098	-1.56(29-I-1)	-1.53(29-I-1)	35.07(14)	2.65(29-II-1)	-4.97(15)	1.39(29-II-1)
0.5	1092	-1.56(29-I-1)	-1.53(29-I-1)	35.98(14)	2.65(29-II-1)	45.67(14)	0.93(29-I-1)
85	1086 1076	-10.31(29-I-1)	1.41(28-II-1)	9.05(28-I-1) 9.63(28-I-1)	-0.60(14)	-3.87(14) 10.24(28-I-1)	0.98(28-II-1)
88	1076	-10.31(29-I-1) -2.93(28-II-1)	1.41(28-II-1) -1.44(28-I-1)	-6.30(29-II-1)	-0.60(14) -0.69(14)	9.56(29-II-1)	-1.03(28-II-1) -3.06(28-I-1)
00	10/2	-2.73(20-11-1)	-1. 11 (20-1-1)	-0.30(29-11-1)	-0.09(14)	7.30(47-11-1)	-5.00(28-1-1)

Asta	N.in.	N	Ту	Tz	Mt	My	Mz
	1094	-2.53(28-II-1)	-1.44(28-I-1)	6.61(29-I-1)	-0.69(14)	7.73(29-I-1)	3.37(28-I-1)
89	0	-4.74(29-II-1)	-0.96(29-II-1)	-7.30(29-II-1)	-0.14(28-II-1)	6.30(29-II-1)	-0.91(29-II-1)
	1075	4.39(29-I-1)	-0.96(29-II-1)	6.70(29-I-1)	-0.14(28-II-1)	4.37(29-I-1)	1.49(29-II-1)
93	1075	4.44(28-I-1)	-1.81(29-I-1)	-9.15(28-II-1)	-0.46(29-I-1)	9.20(28-II-1)	1.19(28-I-1)
	1175	4.44(28-I-1)	-1.81(29-I-1)	-8.55(28-II-1)	-0.46(29-I-1)	5.20(28-I-1)	1.65(29-I-1)
94	1175	0.89(28-II-1)	-0.94(28-II-1)	-8.86(29-I-1)	0.11(28-II-1)	8.33(29-I-1)	-1.19(28-II-1)
	100	-0.99(28-I-1)	-0.94(28-II-1)	7.93(29-II-1)	0.11(28-II-1)	7.66(29-II-1)	1.17(28-II-1)
95	100	2.05(28-II-1)	3.24(29-II-1)	7.37(28-II-1)	-0.22(29-I-1)	5.54(28-I-1)	2.06(29-II-1)
	0	2.05(28-II-1)	3.24(29-II-1)	7.97(28-II-1)	-0.22(29-I-1)	6.52(28-II-1)	-2.64(29-II-1)
96	1175	-1.01(29-II-1)	2.73(28-II-1)	-3.19(15)	-0.10(28-I-1)	1.81(29-II-1)	1.76(28-II-1)
	1275	-0.88(29-II-1)	2.73(28-II-1)	-0.75(29-II-1)	-0.10(28-I-1)	-0.05(29-I-1)	-0.98(28-II-1)

DEFORMAZIONE ISTANTANEA

	b (mm)	h (mm)	I (mm)	M (KN*mm)	E (KN/mmq)	E rid (KN/mmq)	L (mm)	q (KN/m)	q (KN/mm)	freccia (mm)	freccia max I/250	VER
										U in		
comb rara	160	320	436906667		11.6	6.44	4500	3.38	0.00338	3.56	18	SI
carico massimo	160	320	436906667	13000	11.6	6.44	4500	5.1358025	0.005135802	5.41	18	SI

(q=M*8/(I^2))

DEFORMAZIONE A LUNGO TERMINE

El= Eo(1/(1+0.8)

	b (mm)	h (mm)	I (mm)	M (KN*mm)	E (KN/mmq)	E rid (KN/mmq)	L (mm)	q (KN/m)	q (KN/mm)	freccia (mm)	freccia max I/300	VER
										U dif		
comb quasi perm	160	320	436906667		11.6	6.44	4500	3.24	0.00324	6.14	18	SI
carico massimo	160	320	436906667	13000	11.6	6.44	4500	5.1358025	0.005135802	9.74	18	SI

(q=M*8/(l^2))

freccia max I/250

U fin = **U** in +**U** dif 9.71 **18** SI

Comune di Santa Maria del Cedro

Provincia di Cosenza

<u>PROGETTO:</u> REALIZZAZIONE NUVO EDIFICIO PUBBLICO, DESTINATO A SCUOLA CON STRUTTURA IN LEGNO NEL COMUNE DI SANTA MARIA DEL CEDRO (CS). CLASSE D'USO DELLA COSTRUZIONE 3.

<u>PRATICA:</u> REALIZZAZIONE DEGLI INTERVENTI DIRETTI ALL'AMPLIAMENTO DELLA SCUOLA ELEMENTARE UBICATA IN VIA ORSOMARSO DEL COMUNE DI SANTA MARIA DEL CEDRO FRAZIONE MARCELLINA.

Il Committente

Comune di Santa Maria del Cedro

via Nazionale n.16 87020, Santa Maria del Cedro (CS) Tel. 0.985/5727 - C.F. 00433700788

Il Responsabile del Servizio

Dott. Ing. Giuseppe Durante

I Progettisti e DD.LL.

Dott. Geom. Giuseppe Riccetti

Geom. Carmine Covucci

Data: novembre 2016

Tavol	a	:
Integr	azi	ione
D	4	

Elaborato:

Fascicolo dei calcoli strutturali

Scala:

Visti e Pareri :

Aggiornamenti:

FASCICOLO DEI CALCOLI

Comune: Santa Maria del cedro

Titolo del progetto: REALIZZAZIONE NUVO EDIFICIO PUBBLICO, DESTINATO A SCUOLA CON STRUTTURA IN

DESTINATO A SCUOLA CON STRUTTURA IN LEGNO NEL COMUNE DI SANTA MARIA DEL CEDRO (CS).

CLASSE D'USO DELLA COSTRUZIONE 3

Committente: Amministrazione Comunale

Opera: struttura intelaiata in legno

Data: Progettista:

Dott. Geom. Giuseppe Riccetti Geom. Carmine Covucci

FASCICOLO DEI CALCOLI

DIMOSTRAZIONE NUMERICA DELLA SICUREZZA DELL'OPERA E DEL RAGGIUNGIMENTO DELLE PRESTAZIONI ATTESE

INDICE:		
PRESENTAZIONE DEI RISULTATI 5		
TABULATI DI INPUT 7		
Dati generali 7		
Impalcati 7		
Percentuali Spostamento masse impalcati 7		
Combinazioni del Sisma in X e Y e Verticale 7		
Spettri di risposta 7		
Caratteristiche del terreno 9		
Materiali 10		
Nodi - Geometria e vincoli 10		
Nodi - Carichi 11		
Input - Aste - Tabella sezioni tipo 11		
Aste - Geometria e vincoli 12		
Aste - Carichi 13		
Pareti - geometria e vincoli 20		
Muri - Carichi 20		
Tabella solai tipo 20		
Dati solai 20		
TABULATI DI VERIFICA 21		
Centri di rigidezza e Centri di massa 21		
Risultati Analisi Dinamica - Baricentri masse e masse 22		
Verifica Degli Spostamenti Relativi 22		
Periodi di vibrazione e Masse modali 22	_	
Risultati Analisi Dinamica - Sollecitazioni massime - Sigma terreno platea	2	23
Risultati Analisi Dinamica - Spostamenti massimi - Nodi 26		
Risultati Analisi Dinamica - Reazioni massime - Nodi 27		
Risultati Analisi Dinamica - Sollecitazioni massime - Inviluppi - Pilastri	28	
Risultati Analisi Dinamica - Sollecitazioni Massime - Muri discretizzati	28	
VERIFICHE STATO LIMITE ULTIMO 31		
Verifica dei Muri in calcestruzzo 31		
Verifica SLU delle aste in Legno secondo NTC 2008 34		
VERIFICHE STATO LIMITE DI ESERCIZIO 65		
Verifica dei Muri (Stati limite esercizio) 65		
Verifica SLE delle aste in Legno secondo NTC 2008 75		

Il Progettista

MODELLAZIONE

La struttura è costituita da diversi elementi distinti, in base alla loro funzione, in

- Fondazione in c.a. costituita da: platea
- Travi in legno
- · Pilastri in legno
- Solaio per copertura in legno

I livelli di sicurezza scelti dal Committente e dal Progettista in funzione del tipo e dell'uso della struttura, nonché in funzione delle conseguenze del danno, con riguardo a persone, beni, e possibile turbativa sociale, compreso il costo delle opere necessarie per la riduzione del rischio di danno o di collasso, hanno indirizzato al progetto di una struttura con i seguenti requisiti:

- ? sicurezza nei confronti degli Stati Limite Ultimi (SLU)
- ? sicurezza nei confronti degli Stati Limite di Esercizio (SLE)
- ? sicurezza nei confronti di deformazioni permanenti inaccettabili: Stato Limite di Danno (SLD).

La struttura è stata schematizzata con un modello spaziale agli elementi finiti che tengono conto dell'effettivo stato deformativo e di sollecitazione, secondo l'effettiva realizzazione. I vincoli esterni della struttura sono stati caratterizzati, a seconda degli elementi in fondazione se presenti, con: travi winkler, plinti diretti, plinti su pali, platee; ovvero con vincoli perfetti di incastro, appoggio, carrello, ecc. I vincoli interni sono stati schematizzati secondo le sollecitazioni mutuamente scambiate tra gli elementi strutturali, inserendo, ove opportuno, il rilascio di alcune caratteristiche della sollecitazione per schematizzare il comportamento di vincoli interni non iperstatici (cerniere, carrelli, ecc.). Il modello agli elementi finiti è stato calcolato tenendo conto dell'interazione tra strutture in fondazione e strutture in elevazione, consentendo un'accurata distribuzione delle azioni statiche e sismiche; il calcolo viene eseguito considerando il comportamento elastico lineare della struttura. I solai sono schematizzati come aree di carico, sulle quali vengono definiti i carichi permanenti (QP Solai), carichi fissi (QFissi Solai) e variabili (QV solai); tali carichi vengono assegnati alle aste in modo automatico in relazione all'influenza delle diverse aree di carico. Le masse corrispondenti ai carichi variabili sui solai nelle combinazioni sismiche vengono trattate in maniera automatica mediante un coefficiente moltiplicativo definito insieme alla tipologia del solaio.

Il modello utilizzato è stato valutato alla luce dei diversi scenari di carico a cui viene sottoposta la struttura durante la sua costruzione e la sua vita, atto a garantire la sicurezza e la durabilità della stessa. Per la tipologia strutturale affrontata non è stato necessario definire scenari di contingenza, quindi non è stata schematizzata la struttura durante le fasi costruttive, e si ritiene che non ci siano variazioni del modello di calcolo e degli schemi di vincolo, durante la vita dell'opera. Per il dettaglio degli scenari di calcolo si faccia riferimento alla "Relazione di Calcolo"

Il progetto e la verifica degli elementi strutturali è stato effettuato seguendo la teoria degli Stati limite. I parametri relativi alle verifiche effettuate sono riportati nella Relazione di Calcolo.

Il solutore agli elementi finiti impiegato nell'analisi è SpaceSolver, per il calcolo di strutture piane e spaziali schematizzabili da un insieme di elementi finiti tipo

- ? BEAM,
- ? PLATE-SHELL,
- ? WINK,

? BOUNDARY,

interagenti tra loro attraverso i nodi, con la possibilità di tenere in conto tutti i possibili disassamenti, mediante l'introduzione di conci rigidi e traslazioni degli elementi bidimensionali. Il solutore lavora in campo elastico lineare, si basa sulle routines di Matlab ed è stato sviluppato in collaborazione con l'Università di Roma – Tor Vergata. Il solutore offre la possibilità di risolvere anche travi su suolo alla Winkler con molle spalmate sull'intera suola, anziché sul solo asse, plinti diretti e su pali, pali singoli, platee, piastre sottili e spesse con controllo delle rotazioni attorno all'asse normale alla piastra (drilling). Inoltre, per gli elementi BEAM considera il centro di taglio e non il baricentro.

L'affidabilità del solutore è stata testata su una serie di esempi campioni calcolati con altri procedimenti o con formule note, di cui si rende disponibile la documentazione.

AFFIDABILITA' DEI CODICI UTILIZZATI


Il programma è dotato di una serie di filtri di auto diagnostica che segnalano i seguenti eventi:

- ? labilità della struttura
- ? assenza di masse
- ? nodi collegati ad aste nulle
- ? mancanza di terreno sugli elementi in fondazione
- ? controllo sull'assegnazione dei nodi all'impalcato
- ? correttezza degli spettri di progetto
- ? fattori di partecipazione modali
- ? assegnazione dei criteri di verifica agli elementi
- ? numerazione degli elementi strutturali
- ? congruenza delle connessioni tra elementi shell
- ? congruenza delle aree di carico
- ? definizione delle caratteristiche d'inerzia delle sezioni
- ? presenza del magrone sotto la travi tipo wink
- ? elementi non verificati per semi progetto allo SLU, con inserimento automatico delle armature secondo i criteri di verifica.
- ? elementi non verificati allo SLU per armature già inserite nell'elemento strutturale
- ? elementi non verificati allo SLE per armature già inserite nell'elemento strutturale

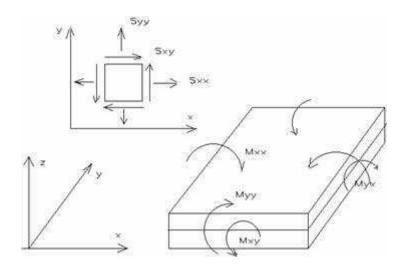
PRESENTAZIONE DEI RISULTATI

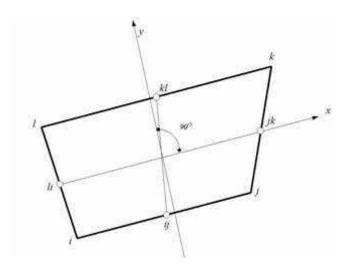
I disegni dello schema statico adottato sono riportati nel fascicolo allegato alla presente relazione

E' stato impiegato il Sistema Internazionale per le unità di misura, con riferimento al daN per le forze.

Il sistema di riferimento globale rispetto al quale è stata riferita l'intera struttura è una terna di assi cartesiani sinistrorsa OXYZ (X,Y, e Z sono disposti e orientati rispettivamente secondo il pollice, l'indice ed il medio della mano destra, una volta posizionati questi ultimi a 90° tra loro).

La terna di riferimento locale per un'asta è pure una terna sinistrorsa O'xyz che ha l'asse x orientato dal nodo iniziale I dell'asta verso il nodo finale J e gli assi y e z diretti secondo gli assi geometrici della sezione con l'asse y orizzontale e orientato in modo da portarsi a coincidere con l'asse x a mezzo di una rotazione oraria di 90° e l'asse z di consequenza.


Per un'asta comunque disposta nello spazio la sua terna locale è orientata in modo tale da portarsi a coincidere con la terna globale a mezzo di rotazioni orarie degli assi locali inferiori a 180°.


- ? Le forze, sia sulle aste che sulle pareti o lastre, sono positive se opposte agli assi locali;
- ? Le forze nodali sono positive se opposte agli assi globali;
- ? Le coppie sono positive se sinistrorse.

Le caratteristiche di sollecitazione sono positive se sulla faccia di normale positiva sono rappresentate da vettori equiversi agli assi di riferimento locali; in particolare il vettore momento positivo rappresenta una coppia che ruota come le dita della mano destra che si chiudono quando il pollice è equi verso all'asse locale.

- ? Le traslazioni sono positive se concorde con gli assi globali;
- ? Le rotazioni sono positive se sinistrorse.

Il sistema di riferimento locale per gli elementi bidimensionali è quello riportato in figura

La terna locale per l'elemento shell è costituita dall'asse x locale che va dal nodo li al nodo jk, l'asse y è diretto secondo il piano dell'elemento e orientato verso il nodo I e l'asse z di conseguenza in modo da formare la solita terna sinistrorsa. L'asse z locale rappresenta la normale positiva all'elemento. Le sollecitazioni dell'elemento sono:

a) sforzi membranali.

Sxx = sx

Syy = sy

Sxy = txy

b) sforzi flessionali:

Mxx momento flettente che genera sx, cioè intorno ad y.

Myy momento flettente che genera sy, cioè intorno ad x

Mxy momento torcente che genera txy.

Le sollecitazioni principali dell'elemento sono:
$$M_{1,2} = \frac{M_{xx} + M_{yy}}{2} \pm \sqrt{\left(\frac{M_{xx} - M_{yy}}{2}\right)^2 + M_{xy}^2}$$

$$S_{1,2} = \frac{S_{xx} + S_{yy}}{2} \pm \sqrt{\left(\frac{S_{xx} - S_{yy}}{2}\right)^2 + S_{xy}^2}$$

$$tg2\theta = \frac{M_{xy}}{M_{xx} - M_{yy}}$$

dove q è l'angolo formato dagli assi principali di M1 e M2 con quelli di riferimento e

$$t_{g}2\psi = \frac{S_{xy}}{S_{xx} - S_{yy}}$$

dove è l'angolo formato dagli assi principali di S1 e S2 con quelli di riferimento

L'elemento shell usato come piastra dà i momenti flettenti e non i tagli in direzione ortogonale all'elemento che possono ottenersi come derivazione dei momenti flettenti;

Tzx = Mxx,x + Mxy,y

Tzy = Mxy,y + Myy,y

quando invece viene usato come lastra ci restituisce una 's' costante ed una 't' costante non adatti a rappresentare momenti flettenti, ma solo sforzi normali e tagli nel piano della lastra.

I tabulati di calcolo contengono due sezioni principali: la descrizione del modello di calcolo e la presentazione dei risultati.

La descrizione del modello di calcolo contiene:

- ? i dati generali (dimensioni)
- ? le coordinate nodali;
- ? i vincoli dei nodi e i vincoli interni delle aste, con le eventuali sconnessioni;
- ? le caratteristiche sezionali;
- ? le caratteristiche dei solai;
- ? le caratteristiche delle aste;
- ? i carichi sulle aste, sui nodi e sui muri (inclusa la distribuzione delle distorsioni impresse, e delle variazioni e dei gradienti di temperatura);
- ? configurazione di sistemi che introducono stati coattivi;
- ? le caratteristiche dei materiali;
- ? legami costitutivi e criteri di verifica;
- ? le condizioni di carico;

La stampa dei risultati contiene:

- ? le combinazioni dei carichi;
- ? le forze sismiche agenti sulla struttura;
- ? gli spostamenti d'impalcato, se l'impalcato è rigido;
- ? gli spostamenti nodali;
- ? le sollecitazioni sulle membrature per ogni combinazione di carico;
- ? la sollecitazione sul terreno sotto travi di fondazione o platee;
- ? deformate;
- ? diagrammi sollecitazioni;

TABULATI DI INPUT

Dati generali

Nome struttura	
Fattore rigidezza assiale pilastri	10
Numero di frequenze	35
% Filtro masse libere	0.1
% Coefficiente di smorzamento viscoso	5
Spostamenti modali con segno	Si
Deformabilità a taglio delle aste	Si
Spostamento ammissibile impalcati	0.0100*h

Impalcati

N°	Quota	Rigido	Incr.Soll.Pil	Inc.Soll.Par.
	m			
0	0.000	No	1.000	1.000
1	3.100	Si	1.000	1.000

Percentuali Spostamento masse impalcati

Posizione	% Spostamento direzione X	% Spostamento direzione Y
1	5	5

Combinazioni del Sisma in X e Y e Verticale

Comb	Pos. SismaX	Pos. SismaY	Fx	Fy	Fz
1	1	1	1	0	0
2	1	1	0	1	0

Comb. = Numero di combinazione dei sismi

Pos. SismaX = Posizione in cui viene scelto il sisma in direzione X Pos. SismaY = Posizione in cui viene scelto il sisma in direzione Y

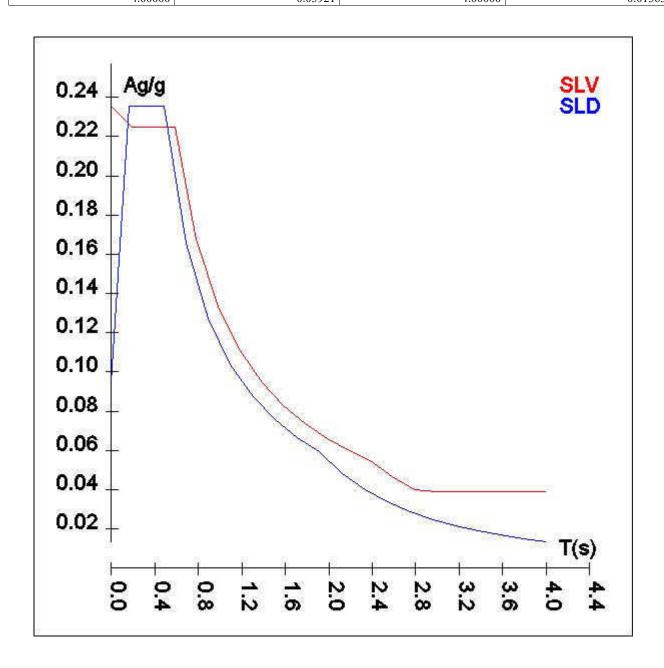
Fx = Fattore con cui il sisma X partecipa Fy = Fattore con cui il sisma Y partecipa

Fz = Fattore con cui il sisma Verticale partecipa (quando richiesto)

Ogni combinazione genera al massimo 8 sotto-combinazioni in base a tutte le combinazioni possibili dei segni di Fx ed Fy ed Fz

Spettri di risposta

Spettro: SpettroNT


Il calcolo degli spettri e del fattore di struttura sono stati calcolati per la seguente tipologia di terreno e struttura

Vita della struttura	

Tipo	Opere ordinarie (50-100) 50 - 100 anni
Vita nominale(anni)	75.0
Classe d'uso	Classe III
Coefficiente d'uso	1.500
Periodo di riferimento(anni)	112.500
Stato limite di esercizio - SLD	PVR=63.0%
Stato limite ultimo - SLV	PVR=10.0%
	TR=113.2
Periodo di ritorno SLD(anni)	TR=113.2 TR=1067.8
Periodo di ritorno SLV(anni)	1R=106/.8
Parametri del sito	
Comune	Santa Maria del Cedro - (CS)
Longitudine	15.8276
Latitudine	39.7689
Id reticolo del sito	37887-37665-37664-37886
Valori di riferimento del sito	37007-37003-37007-37000
Ag/g(TR=113.2) SLD	0.0789
F0(TR=113.2) SLD	2.4851
T*C(TR=113.2) SLD	0.358
Ag/g(TR=1067.8) SLV	0.338
F0(TR=1067.8) SLV	2.5239
T*C(TR=1067.8) SLV	0.453
Coefficiente Amplificazione Topografica	St=1.000
Coefficiente Amphificazione Topografica	St=1.000
Categoria terreno B	
stato limite SLV	
	S=1.20
	TB=0.19
	TC=0.58
	TD=2.38
	15 2.30
stato limite SLD	
	S=1.20
	TB=0.16
	TC=0.48
	TD=1.92
Fattore di struttura (SLV)	
Classe duttilità	В
Tipo struttura	l l
	Legno Kr=0.800000
Struttura non regolare in altezza	
	Kw=1.000
Regolare in pianta	SI
Tipologia : Portali iperstatici con unioni a gambo cilindrico (spinotti e bulloni)	Ce=2.500
Fattore di struttura q=Kw*Kr*Ce	2.000

TSLV [s]	SLV[a/g]	TSLD [s]	SLD[a/g]
0.00000	0.23529	0.00000	0.09472
0.19444	0.22494	0.16125	0.23539
0.58333	0.22494	0.48376	0.23539
0.78343	0.16749	0.68833	0.16543
0.98354	0.13341	0.89290	0.12753
1.18365	0.11086	1.09746	0.10376
1.38375	0.09483	1.30203	0.08746
1.58386	0.08284	1.50660	0.07558
1.78397	0.07355	1.71116	0.06655
1.98408	0.06613	1.91573	0.05944
2.18418	0.06007	2.12416	0.04835
2.38429	0.05503	2.33258	0.04009
2.58625	0.04677	2.54101	0.03379
2.78822	0.04024	2.74944	0.02886
2.99018	0.03921	2.95786	0.02493
3.19214	0.03921	3.16629	0.02176

3.39411	0.03921	3.37472	0.01915
3.59607	0.03921	3.58315	0.01699
3.79804	0.03921	3.79157	0.01517
4 00000	0.03921	4 00000	0.01363

Caratteristiche del terreno

	santa maria scuola- Cost.Winkler=20000.0 kN/m^3 Falda assente														
Strato n°	Spessore v vSat h Addensato (CR Coesione Cii H v														
	m	kN/m^3	kN/m^3	0			kN/m^2	kN/m^2	kN/m^2						
1	1 10.00 18.0 20.0 30 No 10 0 9.39E02 0.33														
2	10.00	18.0	20.0	30	Si	-	0	0	2.00E04	0.30					

Materiali

Materiale: Rck30									
Peso specifico	kN/m^3	25.0							
Modulo di Young E	kN/m^2	3.12E07							
Modulo di Poisson v		0.13							
Coefficiente di dilatazione termica λ	1/°C	1e-005							

Materiale: Legno		
Peso specifico	kN/m^3	8.0
Modulo di Young E	kN/m^2	1.16E07
Modulo di Poisson v		0.30
Coefficiente di dilatazione termica λ	1/°C	5e-006

Nodi - Geometria e vincoli

Nodo	X	Y	Z	Tx	Ту	Tz	Rx	Ry	Rz	Impalcato
			Coordinate [m]					V	incoli	
0	11.400	6.500	4.280	0	0	0	0	0	0	1
100	12.850	6.500	4.280	0	0	0	0	0	0	1
200	13.450	6.500	4.280	0	0	0	0	0	0	1
1052	0.000	0.000	0.000	1	1	0	0	0	1	0
1053	11.400	0.000	0.000	1	1	0	0	0	1	0
1054	5.700	0.000	0.000	1	1	0	0	0	1	0
1055	0.000	9.000	0.000	1	1	0	0	0	1	0
1056	11.400	9.000	0.000	1	1	0	0	0	1	0
1057	5.700	9.000	0.000	1	1	0	0	0	1	0
1058	8.550	9.000	0.000	1	1	0	0	0	1	0
1059	2.850	9.000	0.000	1	1	0	0	0	1	0
1060	2.850	0.000	0.000	1	1	0	0	0	1	0
1061	8.550	0.000	0.000	1	1	0	0	0	1	0
1064	14.700	-1.000	0.000	1	1	0	0	0	1	0
1065	14.700	9.800	0.000	1	1	0	0	0	1	0
1066	-1.000	9.800	0.000	1	1	0	0	0	1	0
1067	-1.000	-1.000	0.000	1	1	0	0	0	1	0
1068	0.000	4.450	0.000	1	1	0	0	0	1	0
1069	5.700	4.450	-0.000	1	1	0	0	0	1	0
1071	0.000	0.000	3.920	0	0	0	0	0	0	1
1072	11.400	0.000	3.920	0	0	0	0	0	0	1
1073	5.700	0.000	3.920	0	0	0	0	0	0	1
1074	0.000	9.000	4.420	0	0	0	0	0	0	1
1075	11.400	9.000	4.420	0	0	0	0	0	0	1
1076	5.700	9.000	4.420	0	0	0	0	0	0	1
1077	1.425	0.000	3.920	0	0	0	0	0	0	1
1078	2.850	0.000	3.920	0	0	0	0	0	0	1
1079	4.275	0.000	3.920	0	0	0	0	0	0	1
1080	7.125	0.000	3.920	0	0	0	0	0	0	1
1081	8.550	0.000	3.920	0	0	0	0	0	0	1
1082	9.975	0.000	3.920	0	0	0	0	0	0	1
1083	9.975	9.000	4.420	0	0	0	0	0	0	1
1084	8.550	9.000	4.420	0	0	0	0	0	0	1
1085	7.125	9.000	4.420	0	0	0	0	0	0	1
1086	4.275	9.000	4.420	0	0	0	0	0	0	1
1087	2.850	9.000	4.420	0	0	0	0	0	0	1
1088	1.425	9.000	4.420	0	0	0	0	0	0	1
1092	5.700	4.450	4.170	0	0	0	0	0	0	1
	277.00					-			1	<u>=</u> _

Nodo	X	Y	Z	Tx	Ty	Tz	Rx	Ry	Rz	Impalcato
1093	0.000	4.450	4.170	0	0	0	0	0	0	1
1094	11.400	4.450	4.170	0	0	0	0	0	0	1
1095	9.975	4.450	4.170	0	0	0	0	0	0	1
1096	8.550	4.450	4.170	0	0	0	0	0	0	1
1097	7.125	4.450	4.170	0	0	0	0	0	0	1
1098	4.275	4.450	4.170	0	0	0	0	0	0	1
1099	2.850	4.450	4.170	0	0	0	0	0	0	1
1100	1.425	4.450	4.170	0	0	0	0	0	0	1
1104	0.000	10.000	4.480	0	0	0	0	0	0	1
1105	11.400	10.000	4.480	0	0	0	0	0	0	1
1106	5.700	10.000	4.480	0	0	0	0	0	0	1
1107	9.975	10.000	4.480	0	0	0	0	0	0	1
1108	8.550	10.000	4.480	0	0	0	0	0	0	1
1109	7.125	10.000	4.480	0	0	0	0	0	0	1
1110	4.275	10.000	4.480	0	0	0	0	0	0	1
1111	2.850	10.000	4.480	0	0	0	0	0	0	1
1112	1.425	10.000	4.480	0	0	0	0	0	0	1
1114	0.000	-1.000	3.870	0	0	0	0	0	0	1
1115	1.425	-1.000	3.870	0	0	0	0	0	0	1
1116	2.850	-1.000	3.870	0	0	0	0	0	0	1
1117	4.275	-1.000	3.870	0	0	0	0	0	0	1
1119	5.700	-1.000	3.870	0	0	0	0	0	0	1
1120	7.125	-1.000	3.870	0	0	0	0	0	0	1
1121	8.550	-1.000	3.870	0	0	0	0	0	0	1
1122	9.975	-1.000	3.870	0	0	0	0	0	0	1
1123	11.400	-1.000	3.870	0	0	0	0	0	0	1
1153	11.400	4.450	0.000	1	1	0	0	0	1	0
1156	12.850	9.000	0.000	1	1	0	0	0	1	0
1156	11.400	6.500	0.000	1	1	0	0	0	1	0
1175	12.850	9.000	4.420	0	0	0	0	0	0	1
1256	12.850	6.500	0.000	1	1	0	0	0	1	0
1275	13.450	9.000	4.420	0	0	0	0	0	0	1
1275	12.850	10.000	4.480	0	0	0	0	0	0	1
1375	13.450	10.000	4.480	0	0	0	0	0	0	1

Nodi - Carichi

N°	C.Car.	Fx	Fy	Fz	Mx	My	Mz	Tx	Ty	Tz	Rx	Ry	Rz	Δt
		kN kN*m				m			0	°C				
107	Vento X	1.00	0.00	0.00	0.00	0.00	0.00							
107 4	Vento X	0.00	1.00	0.00	0.00	0.00	0.00							
107	Vento X	0.00	1.00	0.00	0.00	0.00	0.00							
107 5	Vento X	1.00	0.00	0.00	0.00	0.00	0.00							
107 6	Vento X	0.00	1.00	0.00	0.00	0.00	0.00							
109 5	QFissi Solai	0.00	-0.00	0.00	0.00	0.00	0.00							

Input - Aste - Tabella sezioni tipo

Tipo	Nome	Base	Altezza	Larg.mag.
R		m	m	m
	12 x 16	0.12	0.16	0.00
	16 x 32	0.16	0.32	0.00

Tipo	Nome	Base	Altezza	Larg.mag.
	32 x16	0.16	0.32	0.00
	20x40	0.20	0.40	0.00

Aste - Geometria e vincoli

	Ni	Nf	Vinc.	Sez.	Mat.	Crit.pr.	Rot.	f.f.	xi	yi	zi	xf	yf	zf	Tipo	L2	L3
1	1052	1071	I-I	32 x16	Legno	Legno	0	5050	0.00	0.00	0.00	0.00	0.00	0.00	Pila.	3.92	3.92
2	1053	1072	I-I	32 x16	Legno	Legno_	0	2020	0.00	0.00	0.00	0.00	0.00	0.00	Pila.	3.92	3.92
3 4	1054 1055	1073 1074	I-I I-I	32 x16 32 x16	Legno Legno	Legno_	90	5050 5050	0.00	0.00	0.00	0.00	0.00	0.00	Pila. Pila.	3.92 4.42	3.92 4.42
5	1055	1074	I-I	32 x16	Legno	Legno_ Legno	90	5050	0.00	0.00	0.00	0.00	0.00	0.00	Pila.	4.42	4.42
6	1057	1076	I-I	32 x16	Legno	Legno_	90	5050	0.00	0.00	0.00	0.00	0.00	0.00	Pila.	4.42	4.42
22	1058	1084	I-I	32 x16	Legno	Legno_	90	5050	0.00	0.00	0.00	0.00	0.00	0.00	Pila.	4.42	4.42
23	1059 1060	1087 1078	I-I I-I	32 x16 32 x16	Legno Legno	Legno_ Legno	90	5050 5050	0.00	0.00	0.00	0.00	0.00	0.00	Pila. Pila.	4.42 3.92	4.42 3.92
25	1061	1078	I-I	32 x16	Legno	Legno_	90	5050	0.00	0.00	0.00	0.00	0.00	0.00	Pila.	3.92	3.92
47	1092	1069	I-I	32 x16	Legno	Legno_	0	5550	0.00	0.00	0.00	-0.00	0.00	0.00	Pila.	4.17	4.17
81	1093	1068	I-I	32 x16 16 x 32	Legno	Legno_	0	5050	0.00	0.00	0.00	0.00	0.00	0.00	Pila.	4.17	4.17
90	1156	1156 1175	I-I I-I	32 x16	Legno Legno	Legno_ Legno	0	5050 5050	0.00	0.00	0.00	0.00	0.00	0.00	Pila. Pila.	4.28 4.42	4.28
92	100	1256	I-I	16 x 32	Legno	Legno	0	5050	0.00	0.00	0.00	0.00	0.00	0.00	Pila.	4.28	4.28
98	1153	1094	I-I	16 x 32	Legno	Legno_	0	5050	0.00	0.00	0.00	0.00	0.00	0.00	Pila.	4.17	4.17
1 2	100	200	I-I	16 x 32	Legno	Legno_	0	5550 5550	0.00	0.00	0.00	0.00	0.00	0.00	Trave Trave	0.60	0.60
7	1175 1071	1275 1077	I-I I-I	16 x 32 16 x 32	Legno Legno	Legno_ Legno	0	5550	0.00	0.00	0.00	0.00	0.00	0.00	Trave	0.60 1.43	1.43
8	1073	1080	I-I	16 x 32	Legno	Legno_	0	5550	0.00	0.00	0.00	0.00	0.00	0.00	Trave	1.42	1.42
9	1075	1083	I-I	16 x 32	Legno	Legno_	0	5550	0.00	0.00	0.00	0.00	0.00	0.00	Trave	1.43	1.43
10	1073 1077	1092 1078	I-I I-I	16 x 32 16 x 32	Legno Legno	Legno_ Legno	0	5550 5050	0.00	0.00	0.00	0.00	0.00	0.00	Trave Trave	4.46 1.43	4.46 1.43
12	1077	1078	I-I	16 x 32	Legno	Legno_	0	5050	0.00	0.00	0.00	0.00	0.00	0.00	Trave	1.43	1.43
13	1080	1081	I-I	16 x 32	Legno	Legno_	0	5050	0.00	0.00	0.00	0.00	0.00	0.00	Trave	1.43	1.43
14	1081	1082	I-I	16 x 32	Legno	Legno_	0	5050	0.00	0.00	0.00	0.00	0.00	0.00	Trave	1.42	1.42
15 16	1082 1083	1072 1084	I-I I-I	16 x 32 16 x 32	Legno Legno	Legno_ Legno	0	5065 5050	0.00	0.00	0.00	0.00	0.00	0.00	Trave Trave	1.43	1.43
17	1084	1085	I-I	16 x 32	Legno	Legno	0	5050	0.00	0.00	0.00	0.00	0.00	0.00	Trave	1.43	1.43
18	1085	1076	I-I	16 x 32	Legno	Legno_	0	5055	0.00	0.00	0.00	0.00	0.00	0.00	Trave	1.42	1.42
19	1086 1087	1087 1088	I-I I-I	16 x 32	Legno	Legno_	0	5050 5050	0.00	0.00	0.00	0.00	0.00	0.00	Trave	1.43	1.43
20	1087	1088	I-I	16 x 32 16 x 32	Legno Legno	Legno_ Legno	0	5055	0.00	0.00	0.00	0.00	0.00	0.00	Trave Trave	1.43	1.43
26	1093	1074	I-I	16 x 32	Legno	Legno_	0	5055	0.00	0.00	0.00	0.00	0.00	0.00	Trave	4.56	4.56
27	1094	0	I-I	16 x 32	Legno	Legno_	0	5050	0.00	0.00	0.00	0.00	0.00	0.00	Trave	2.05	2.05
28	1094 1095	1095 1096	I-I I-I	20x40 20x40	Legno Legno	Legno_ Legno	0	5050 5050	0.00	0.00	0.00	0.00	0.00	0.00	Trave Trave	1.43	1.43
30	1095	1090	I-I	20x40 20x40	Legno	Legno_	0	5050	0.00	0.00	0.00	0.00	0.00	0.00	Trave	1.42	1.42
31	1097	1092	I-I	20x40	Legno	Legno_	0	5050	0.00	0.00	0.00	0.00	0.00	0.00	Trave	1.42	1.42
32	1098	1099	I-I	20x40	Legno	Legno_	0	5050	0.00	0.00	0.00	0.00	0.00	0.00	Trave	1.43	1.43
33	1099 1100	1100 1093	I-I I-I	20x40 20x40	Legno Legno	Legno_ Legno	0	5050 5050	0.00	0.00	0.00	0.00	0.00	0.00	Trave Trave	1.43	1.43
35	1083	1095	I-I	16 x 32	Legno	Legno	0	5050	0.00	0.00	0.00	-0.00	0.00	0.00	Trave	4.56	4.56
36	1095	1082	I-I	16 x 32	Legno	Legno_	0	5055	0.00	0.00	0.00	0.00	0.00	0.00	Trave	4.46	4.46
37	1084 1096	1096	I-I	16 x 32	Legno	Legno_	0	5550 5055	0.00	0.00	0.00	0.00	0.00	0.00	Trave	4.56 4.46	4.56 4.46
39	1096	1081 1097	I-I I-I	16 x 32 16 x 32	Legno Legno	Legno_ Legno	0	5050	0.00	0.00	0.00	-0.00 0.00	0.00	0.00	Trave Trave	4.46	4.46
40	1097	1080	I-I	16 x 32	Legno	Legno_	0	5055	0.00	0.00	0.00	0.00	0.00	0.00	Trave	4.46	4.46
41	1086	1098	I-I	16 x 32	Legno	Legno_	0	5050	0.00	-0.00	0.00	-0.00	-0.00	0.00	Trave	4.56	4.56
42	1098 1088	1079 1100	I-I I-I	16 x 32 16 x 32	Legno Legno	Legno_ Legno	0	5055 5050	0.00	-0.00 -0.00	0.00	-0.00 -0.00	-0.00 -0.00	0.00	Trave Trave	4.46 4.56	4.46
43	1100	1077	I-I	16 x 32	Legno	Legno_	0	5055	0.00	-0.00	0.00	-0.00	-0.00	0.00	Trave	4.46	4.46
45	1087	1099	I-I	16 x 32	Legno	Legno_	0	5550	0.00	0.00	0.00	0.00	0.00	0.00	Trave	4.56	4.56
46	1099	1078	I-I	16 x 32	Legno	Legno_	0	5055	0.00	0.00	0.00	-0.00	0.00	0.00	Trave	4.46	4.46
48	1088 1087	1112 1111	I-I I-I	16 x 32 16 x 32	Legno Legno	Legno_ Legno	0	5050 5550	0.00	0.00	0.00	-0.00	0.00	0.00	Trave Trave	1.00	1.00
50	1086	1110	I-I	16 x 32	Legno	Legno	0	5050	0.00	0.00	0.00	-0.00	0.00	0.00	Trave	1.00	1.00
51	1085	1109	I-I	16 x 32	Legno	Legno_	0	5050	0.00	-0.00	0.00	0.00	-0.00	0.00	Trave	1.00	1.00
52	1084 1083	1108 1107	I-I I-I	16 x 32 16 x 32	Legno	Legno_	0	5550 5050	0.00	-0.00	0.00	0.00	-0.00	0.00	Trave	1.00	1.00
53	1083	1107	I-I I-I	16 x 32	Legno Legno	Legno_ Legno	0	5550	0.00	0.00	0.00	0.00	0.00	0.00	Trave Trave	1.00	1.00
55	1075	1105	I-I	16 x 32	Legno	Legno_	0	5550	0.00	0.00	0.00	0.00	0.00	0.00	Trave	1.00	1.00
56	1076	1106	I-I	16 x 32	Legno	Legno_	0	5550	0.00	0.00	0.00	0.00	0.00	0.00	Trave	1.00	1.00
71 72	1071 1077	1114	I-I I-I	16 x 32 16 x 32	Legno Legno	Legno_ Legno	0	5550 5550	0.00	-0.00	0.00	-0.00	-0.00	0.00	Trave Trave	1.00	1.00
73	1077	1116	I-I	16 x 32	Legno	Legno_	0	5550	0.00	0.00	0.00	0.00	0.00	0.00	Trave	1.00	1.00
74	1079	1117	I-I	16 x 32	Legno	Legno_	0	5550	0.00	-0.00	0.00	-0.00	-0.00	0.00	Trave	1.00	1.00
75	1073	1119	I-I	16 x 32	Legno	Legno_	0	5550	0.00	0.00	0.00	0.00	0.00	0.00	Trave	1.00	1.00
76	1080	1120	I-I	16 x 32	Legno	Legno_	0	5550	0.00	0.00	0.00	0.00	0.00	0.00	Trave	1.00	1.00

	Ni	Nf	Vinc.	Sez.	Mat.	Crit.pr.	Rot.	f.f.	xi	yi	zi	xf	yf	zf	Tipo	L2	L3
77	1081	1121	I-I	16 x 32	Legno	Legno	0	5550	0.00	0.00	0.00	0.00	0.00	0.00	Trave	1.00	1.00
78	1082	1122	I-I	16 x 32	Legno	Legno	0	5550	0.00	0.00	0.00	0.00	0.00	0.00	Trave	1.00	1.00
79	1072	1123	I-I	16 x 32	Legno	Legno	0	5550	0.00	0.00	0.00	0.00	0.00	0.00	Trave	1.00	1.00
80	1092	1076	I-I	16 x 32	Legno	Legno	0	5555	0.00	0.00	0.00	0.00	0.00	0.00	Trave	4.56	4.56
82	1093	1071	I-I	16 x 32	Legno	Legno	0	5555	0.00	0.00	0.00	0.00	0.00	0.00	Trave	4.46	4.46
83	1079	1073	I-I	16 x 32	Legno	Legno_	0	5055	0.00	0.00	-0.00	0.00	0.00	0.00	Trave	1.42	1.42
84	1098	1092	I-I	20x40	Legno	Legno	0	5055	0.00	0.00	-0.00	0.00	0.00	0.00	Trave	1.42	1.42
85	1086	1076	I-I	16 x 32	Legno	Legno	0	5055	0.00	0.00	-0.00	0.00	0.00	0.00	Trave	1.42	1.42
88	1072	1094	I-I	16 x 32	Legno	Legno	0	5250	0.00	-0.00	0.00	0.00	0.00	0.00	Trave	4.46	4.46
89	0	1075	I-I	16 x 32	Legno	Legno	0	5055	0.00	0.00	0.00	0.00	0.00	0.00	Trave	2.50	2.50
93	1075	1175	I-I	16 x 32	Legno	Legno_	0	5555	0.00	0.00	0.00	0.00	0.00	0.00	Trave	1.45	1.45
94	1175	100	I-I	16 x 32	Legno	Legno_	0	5555	0.00	0.00	0.00	0.00	0.00	0.00	Trave	2.50	2.50
95	100	0	I-I	16 x 32	Legno	Legno	0	5555	0.00	0.00	0.00	0.00	0.00	0.00	Trave	1.45	1.45
96	1175	1275	I-I	16 x 32	Legno	Legno	0	5550	0.00	0.00	0.00	0.00	0.00	0.00	Trave	1.00	1.00
113	1110	1111	I-I	12 x 16	Legno	Legno	0	5050	0.00	0.00	0.00	0.00	0.00	0.00	Gen.	1.43	1.43
114	1111	1112	I-I	12 x 16	Legno	Legno_	0	5050	0.00	0.00	0.00	0.00	0.00	0.00	Gen.	1.43	1.43
115	1112	1104	I-I	12 x 16	Legno	Legno_	0	5050	0.00	0.00	0.00	0.00	0.00	0.00	Gen.	1.43	1.43
116	1105	1107	I-I	12 x 16	Legno	Legno_	0	5050	0.00	0.00	0.00	-0.00	0.00	0.00	Gen.	1.43	1.43
117	1107	1108	I-I	12 x 16	Legno	Legno_	0	5050	0.00	0.00	0.00	0.00	0.00	0.00	Gen.	1.42	1.42
118	1108	1109	I-I	12 x 16	Legno	Legno_	0	5050	0.00	0.00	0.00	-0.00	0.00	0.00	Gen.	1.43	1.43
119	1109	1106	I-I	12 x 16	Legno	Legno_	0	5050	0.00	0.00	0.00	0.00	0.00	0.00	Gen.	1.42	1.42
120	1114	1115	I-I	12 x 16	Legno	Legno_	0	5050	0.00	0.00	0.00	-0.00	0.00	0.00	Gen.	1.43	1.43
121	1115	1116	I-I	12 x 16	Legno	Legno_	0	5050	0.00	0.00	0.00	0.00	0.00	0.00	Gen.	1.43	1.43
122	1116	1117	I-I	12 x 16	Legno	Legno_	0	5050	0.00	0.00	0.00	-0.00	0.00	0.00	Gen.	1.43	1.43
123	1119	1120	I-I	12 x 16	Legno	Legno_	0	5050	0.00	0.00	0.00	0.00	0.00	0.00	Gen.	1.42	1.42
124	1120	1121	I-I	12 x 16	Legno	Legno_	0	5050	0.00	0.00	0.00	0.00	0.00	0.00	Gen.	1.43	1.43
125	1121	1122	I-I	12 x 16	Legno	Legno_	0	5050	0.00	0.00	0.00	0.00	0.00	0.00	Gen.	1.42	1.42
126	1122	1123	I-I	12 x 16	Legno	Legno_	0	5050	0.00	0.00	0.00	0.00	0.00	0.00	Gen.	1.43	1.43
127	1117	1119	I-I	12 x 16	Legno	Legno_	0	5050	0.00	0.00	-0.00	0.00	0.00	0.00	Gen.	1.42	1.42
128	1110	1106	I-I	12 x 16	Legno	Legno_	0	5050	0.00	0.00	-0.00	0.00	0.00	0.00	Gen.	1.42	1.42
131	1275	1105	I-I	12 x 16	Legno	Legno_	0	5050	0.00	0.00	0.00	0.00	0.00	0.00	Gen.	1.45	1.45
3	1275	1375	I-I	12 x 16	Legno	Legno_	0	5050	0.00	0.00	0.00	0.00	0.00	0.00	Gen.	0.60	0.60
4	1375	1275	I-I	12 x 16	Legno	Legno_	0	5050	0.00	0.00	0.00	0.00	0.00	0.00	Gen.	1.00	1.00
5	1275	200	I-I	12 x 16	Legno	Legno_	0	5050	0.00	0.00	0.00	0.00	0.00	0.00	Gen.	2.50	2.50

Aste - Carichi

Descrizione carichi aste

UnifG Uniforme globale UnifL Uniforme locale VarG Variabile lineare globale VarL Variabile lineare locale Poligonale globale PolG Distorsione termica Termico Torcente Carico torcente

Carico da precompressione Poligonale locale

Precomp.
PolL

PolL		1	Poligonale locale									
Sezione	Ni	Nf	Cond.	Tipo c.	Xi	QXi	QYi	QZi	Xf	QXf	QYf	QZf
						car. dist	. kN/m			car. dist	. kN/m	
					m	coppie t	orc. kN		m	coppie t	orc. kN	
Pilastro 1	•											
32 x16	1052	1071	Peso Proprio	UnifG	0.00	0	0	0	3.92	0	0	0
Pilastro 2												
32 x16	1053	1072	Peso Proprio	UnifG	0.00	0	0	0	3.92	0	0	0
Pilastro 3	•											
32 x16	1054	1073	Peso Proprio	UnifG	0.00	0	0	0	3.92	0	0	0
Pilastro 4												
32 x16	1055	1074	Peso Proprio	UnifG	0.00	0	0	0	4.42	0	0	0
Pilastro 5	•											
32 x16	1056	1075	Peso Proprio	UnifG	0.00	0	0	0	4.42	0	0	0
Pilastro 6												
32 x16	1057	1076	Peso Proprio	UnifG	0.00	0	0	0	4.42	0	0	0
Pilastro 22	•											
32 x16	1058	1084	Peso Proprio	UnifG	0.00	0	0	0	4.42	0	0	0
Pilastro 23			·									
32 x16	1059	1087	Peso Proprio	UnifG	0.00	0	0	0	4.42	0	0	0
Pilastro 24	·		·			-		-		·		

14

- ·	3.71	2.10	G 1	TD'	37'	0.77	017	07'	77.0	0377	OTTC	070
Sezione	Ni	Nf	Cond.	Tipo c.	Xi	QXi	QYi	QZi	Xf	QXf	QYf	QZf
32 x16	1060	1078	Peso Proprio	UnifG	0.00	0	0	0	3.92	0	0	0
Pilastro 25	1061	1081	Daga Duamuia	UnifC	0.00	0	0	0	2.02	0	0	0
32 x16	1061	1081	Peso Proprio	UnifG	0.00	U	U	U	3.92	U	U	U
Pilastro 47 32 x16	1092	1069	Peso Proprio	I In:fC	0.00	0	0	0	4.17	0	0	0
	1092	1009	Peso Proprio	UnifG	0.00	U	U	U	4.1/	U	U	U
Pilastro 81 32 x16	1093	1068	Peso Proprio	UnifG	0.00	0	0	0	4.17	0	0	0
Pilastro 90	1093	1008	Peso Proprio	UniiG	0.00	U	U	U	4.1/	U	U	U
16 x 32	0	1156	Daga Duamuia	UnifG	0.00	0	0	0	4.28	0	0	0
Pilastro 91	U	1130	Peso Proprio	UniiG	0.00	U	U	U	4.28	U	U	U
32 x16	1156	1175	Peso Proprio	UnifG	0.00	0	0	0	4.42	0	0	0
Pilastro 92	1130	11/3	1 eso 1 toprio	Ollifo	0.00	U	U	U	4.42	U	U	U
16 x 32	100	1256	Peso Proprio	UnifG	0.00	0	0	0	4.28	0	0	0
Pilastro 98	100	1230	1 eso 1 toptio	Ollifo	0.00	U	U	U	7.20	0	U	0
16 x 32	1153	1094	Peso Proprio	UnifG	0.00	0	0	0	4.17	0	0	0
Trave 1	1133	1071	r eso r roprio	Cinio	0.00	0	U	U	1.17	0	· ·	-
16 x 32	100	200	Peso Proprio	UnifG	0.00	0	0	0	0.60	0	0	0
Trave 2	100	200	r eso r roprio	Cinio	0.00	0	U	U	0.00	0	· ·	-
16 x 32	1175	1275	Peso Proprio	UnifG	0.00	0	0	0	0.60	0	0	0
Trave 7	1173	12/3	r eso r roprio	Cimo	0.00	0	U	U	0.00	0	U	0
16 x 32	1071	1077	Peso Proprio	UnifG	0.00	0	0	0	1.43	0	0	0
Trave 8	10,1	10,,,	1 ess 1 reprie	o iii o	0.00	ŭ	Ü	Ů,	11.10	<u> </u>	Ü	
16 x 32	1073	1080	Peso Proprio	UnifG	0.00	0	0	0	1.42	0	0	0
Trave 9	1075	1000	T ese T Teprie	Olino	0.00	· ·	Ŭ	· ·	1.12	0	Ū	
16 x 32	1075	1083	Peso Proprio	UnifG	0.00	0	0	0	1.43	0	0	0
Trave 10	10,0	1000	1 ess 1 reprie	o iii o	0.00	ŭ	Ü	Ů,	11.10	<u> </u>	Ů	
16 x 32	1073	1092	Peso Proprio	UnifG	0.00	0	0	0	4.46	0	0	0
16 x 32	1073	1092	QP Solai	PolG	0.00	0	0	0	4.46	0	0	0
16 x 32	1073	1092	QFissi Solai	PolG	0.00	0	0	2	4.46	0	0	2
16 x 32	1073	1092	OV Solai	PolG	0.00	0	0	1	4.46	0	0	1
16 x 32	1073	1092	Neve	PolL	0.00	-0	0	0	4.46	-0	0	0
16 x 32	1073	1092	Neve	PolL	0.00	-0	0	0	4.46	-0	0	0
Trave 11					0.00	-	-	-		-	-	
16 x 32	1077	1078	Peso Proprio	UnifG	0.00	0	0	0	1.43	0	0	0
Trave 12			1	l								
16 x 32	1078	1079	Peso Proprio	UnifG	0.00	0	0	0	1.43	0	0	0
Trave 13	-		* '	1			-					
16 x 32	1080	1081	Peso Proprio	UnifG	0.00	0	0	0	1.43	0	0	0
Trave 14	'		* '	I			,					
16 x 32	1081	1082	Peso Proprio	UnifG	0.00	0	0	0	1.42	0	0	0
Trave 15			•	,								
16 x 32	1082	1072	Peso Proprio	UnifG	0.00	0	0	0	1.43	0	0	0
Trave 16			-				,	·				
16 x 32	1083	1084	Peso Proprio	UnifG	0.00	0	0	0	1.42	0	0	0
Trave 17			•	,								
16 x 32	1084	1085	Peso Proprio	UnifG	0.00	0	0	0	1.43	0	0	0
Trave 18												
16 x 32	1085	1076	Peso Proprio	UnifG	0.00	0	0	0	1.42	0	0	0
Trave 19												
16 x 32	1086	1087	Peso Proprio	UnifG	0.00	0	0	0	1.43	0	0	0
Trave 20												
16 x 32	1087	1088	Peso Proprio	UnifG	0.00	0	0	0	1.43	0	0	0
Trave 21												
16 x 32	1088	1074	Peso Proprio	UnifG	0.00	0	0	0	1.43	0	0	0
Trave 26												
16 x 32	1093	1074	Peso Proprio	UnifG	0.00	0	0	0	4.56	0	0	0
16 x 32	1093	1074	QP Solai	PolG	0.00	0	0	0	4.56	0	0	0
16 x 32	1093	1074	QFissi Solai	PolG	0.00	0	0	1	4.56	0	0	1
16 x 32	1093	1074	QV Solai	PolG	0.00	0	0	0	4.56	0	0	0
16 x 32	1093	1074	Tamponamenti(G2)	UnifG	0.00	0	0	0	4.56	0	0	0
16 x 32	1093	1074	Neve	PolL	0.00	0	0	0	4.56	0	0	0
Trave 27				1		1-		1		1		
16 x 32	1094	0	Peso Proprio	UnifG	0.00	0	0	0	2.05	0	0	0
16 x 32	1094	0	QP Solai	PolG	0.00	0	0	0	2.05	0	0	0
16 x 32	1094	0	QFissi Solai	PolG	0.00	0	0	1	2.05	0	0	1
16 x 32	1094	0	QV Solai	PolG	0.00	0	0	0	2.05	0	0	0

G .	NT.	NIC	C 1	Tr'	37.	OV.	OM.	07'	37.0	OVC	OMC	076
Sezione	Ni	Nf	Cond.	Tipo c.	Xi	QXi	QYi	QZi	Xf	QXf	QYf	QZf
16 x 32	1094 1094	0	Tamponamenti(G2)	UnifG PolL	0.00	-0	0	0	2.05	-0	0	0
16 x 32	1094	0	Neve	Poil	0.00	-0	U	0	2.05	-0	0	- 0
Trave 28 20x40	1094	1095	Daga Duamia	LinifC	0.00	0	0	1	1.43	0	0	1
Trave 29	1094	1093	Peso Proprio	UnifG	0.00	U	U	1	1.43	0	U	- 1
20x40	1095	1096	Peso Proprio	UnifG	0.00	0	0	1	1.43	0	0	1
Trave 30	1093	1090	Peso Proprio	UnitG	0.00	U	U	1	1.43	U	U	
20x40	1096	1097	Daga Drannia	UnifG	0.00	0	0	1	1.43	0	0	1
Trave 31	1090	1097	Peso Proprio	UnitG	0.00	U	U	1	1.43	0	U	- 1
20x40	1097	1092	Peso Proprio	UnifG	0.00	0	0	1	1.43	0	0	1
Trave 32	1097	1092	reso riopilo	UllilG	0.00	U	U	1	1.43	U	U	1
20x40	1098	1099	Peso Proprio	UnifG	0.00	0	0	1	1.43	0	0	1
Trave 33	1098	1099	Peso Proprio	UnitG	0.00	U	U	1	1.43	U	U	1
20x40	1099	1100	Peso Proprio	UnifG	0.00	0	0	1	1.43	0	0	1
Trave 34	1099	1100	reso riopilo	UllilG	0.00	U	U	1	1.43	U	U	1
20x40	1100	1093	Peso Proprio	UnifG	0.00	0	0	1	1.43	0	0	1
Trave 35	1100	1093	reso riopilo	UllilG	0.00	U	U	1	1.43	U	U	1
16 x 32	1083	1095	Peso Proprio	UnifG	0.00	0	0	0	4.56	0	0	0
							0				0	0
16 x 32 16 x 32	1083		QP Solai QFissi Solai	PolG PolG	0.00	0	0	0 2	4.56 4.56	0	0	2
16 x 32	1083		QF1SS1 Solai QV Solai	PolG	0.00	0	0	1	4.56	0	0	1
16 x 32	1083		Q v Solai Neve	PolG	0.00	-0	0	0	4.56	-0	0	0
16 x 32	1083		Neve Neve	PolL	0.00	-0	0	0	4.56	-0	0	0
	1083	1093	Neve	POIL	0.00	-0	U	U	4.30	-0	U	- 0
Trave 36 16 x 32	1095	1082	Peso Proprio	UnifG	0.00	0	0	0	4.46	0	0	0
16 x 32	1095		QP Solai	PolG	0.00	0	0	0	4.46	0	0	0
16 x 32	1095	1082	QF Solai QFissi Solai	PolG	0.00	0	0	2	4.46	0	0	2
16 x 32	1095		QV Solai	PolG	0.00	0	0	1	4.46	0	0	1
16 x 32	1095		Neve	PolL	0.00	0	0	0	4.46	0	0	0
16 x 32	1095		Neve	PolL	0.00	0	0	0	4.46	0	0	0
Trave 37	1093	1002	Neve	FOIL	0.00	U	U	U	4.40	U	U	U
16 x 32	1084	1096	Peso Proprio	UnifG	0.00	0	0	0	4.56	0	0	0
16 x 32	1084		QP Solai	PolG	0.00	0	0	0	4.56	0	0	0
16 x 32	1084		QFissi Solai	PolG	0.00	0	0	2	4.56	0	0	2
16 x 32	1084		QV Solai	PolG	0.00	0	0	1	4.56	0	0	1
16 x 32	1084	1096	Neve	PolL	0.00	-0	0	0	4.56	-0	0	0
16 x 32	1084		Neve	PolL	0.00	-0	0	0	4.56	-0	0	0
Trave 38	1004	1090	Neve	FOIL	0.00	-0	U	U	4.50	-0	U	
16 x 32	1096	1081	Peso Proprio	UnifG	0.00	0	0	0	4.46	0	0	0
16 x 32	1096		QP Solai	PolG	0.00	0	0	0	4.46	0	0	0
16 x 32		1081	QF Solai QFissi Solai	PolG	0.00	0	0	2	4.46	0	0	2
16 x 32		1081	QV Solai	PolG	0.00	0	0	1	4.46	0	0	1
16 x 32	1096		Neve	PolL	0.00	0	0	0	4.46	0	0	0
16 x 32	1096		Neve	PolL	0.00	0	0	0	4.46	0	0	0
Trave 39	1090	1001	neve	POIL	0.00	U	U	U	4.40	U	U	U
16 x 32	1085	1097	Peso Proprio	UnifG	0.00	0	0	0	4.56	0	0	0
16 x 32	1085		QP Solai	PolG	0.00	0	0	0	4.56	0	0	0
16 x 32	1085		QF Solai QFissi Solai	PolG	0.00	0	0	2	4.56	0	0	2
16 x 32 16 x 32	1085		QF1881 Solai QV Solai	PolG	0.00	0	0	1	4.56	0	0	1
16 x 32	1085		Neve	PolL	0.00	-0	0	0	4.56	-0	0	0
16 x 32	1085		Neve	PolL	0.00	-0	0	0	4.56	-0	0	0
Trave 40	1003	107/	INEVE	FUIL	0.00	-0	U	U	+.30	-0	U	
16 x 32	1097	1080	Peso Proprio	UnifG	0.00	0	0	0	4.46	0	0	0
16 x 32	1097		QP Solai	PolG	0.00	0	0	0	4.46	0	0	0
16 x 32	1097		QF Solai QFissi Solai	PolG	0.00	0	0	2	4.46	0	0	2
16 x 32	1097		QV Solai	PolG	0.00	0	0	1	4.46	0	0	1
16 x 32	1097		Neve	PolL	0.00	0	0	0	4.46	0	0	0
16 x 32	1097		Neve	PolL	0.00	0	0	0	4.46	0	0	0
Trave 41	109/	1000	INEVE	FUIL	0.00	U	U	U	7.40	U	U	- 0
16 x 32	1086	1098	Peso Proprio	UnifG	0.00	0	0	0	4.56	0	0	0
16 x 32		1098	QP Solai	PolG	0.00	0	0	0	4.56	0	0	0
			QF Solai QFissi Solai								0	
16 x 32	1086	1098 1098		PolG	0.00	0	0	2	4.56	0	0	2
16 x 32	1086		QV Solai	PolG	0.00	-0	0	1	4.56	-0	0	0
16 x 32 16 x 32	1086		Neve	PolL	0.00	-0	0	0	4.56 4.56	-0	0	0
	1080	1098	Neve	PolL	0.00	-0	U	U	4.30	-0	U	
Trave 42												

Sezione	Ni	Nf	Cond.	Time	v:	OV:	OYi	07:	Xf	OVf	OYf	OZf
16 x 32	1098	1079	Peso Proprio	Tipo c. UnifG	Xi 0.00	QXi 0	0	QZi 0	4.46	QXf 0	0	QZ1 0
16 x 32	1098	1079	QP Solai	PolG	0.00	0	0	0	4.46	0	0	0
16 x 32	1098	1079	QFissi Solai	PolG	0.00	0	0	2	4.46	0	0	2
16 x 32	1098	1079	QV Solai	PolG	0.00	0	0	1	4.46	0	0	1
16 x 32	1098	1079	Neve	PolL	0.00	0	0	0	4.46	0	0	0
16 x 32	1098	1079	Neve	PolL	0.00	0	0	0	4.46	0	0	0
Trave 43	1000	1100	n n · 1	H :00	0.00	0	0	0	1.50	0	0	
16 x 32 16 x 32	1088 1088	1100	Peso Proprio QP Solai	UnifG PolG	0.00	0	0	0	4.56 4.56	0	0	0
16 x 32	1088	1100	QF Solai QFissi Solai	PolG	0.00	0	0	2	4.56	0	0	2
16 x 32	1088	1100	QV Solai	PolG	0.00	0	0	1	4.56	0	0	1
16 x 32	1088	1100	Neve	PolL	0.00	-0	0	0	4.56	-0	0	0
16 x 32	1088	1100	Neve	PolL	0.00	-0	0	0	4.56	-0	0	0
Trave 44	1400								1			
16 x 32	1100	1077	Peso Proprio	UnifG	0.00	0	0	0	4.46	0	0	0
16 x 32 16 x 32	1100 1100	1077 1077	QP Solai QFissi Solai	PolG PolG	0.00	0	0	0 2	4.46 4.46	0	0	0 2
16 x 32	1100	1077	QV Solai	PolG	0.00	0	0	1	4.46	0	0	1
16 x 32	1100	1077	Neve	PolL	0.00	0	0	0	4.46	0	0	0
16 x 32	1100	1077	Neve	PolL	0.00	0	0	0	4.46	0	0	0
Trave 45			1	1								
16 x 32	1087	1099	Peso Proprio	UnifG	0.00	0	0	0	4.56	0	0	0
16 x 32	1087	1099	QP Solai	PolG	0.00	0	0	0	4.56	0	0	0
16 x 32 16 x 32	1087	1099 1099	QFissi Solai	PolG	0.00	0	0	2	4.56	0	0	2
16 x 32 16 x 32	1087 1087	1099	QV Solai Neve	PolG PolL	0.00	-0	0	0	4.56 4.56	-0	0	0
16 x 32	1087	1099	Neve	PolL	0.00	-0	0	0	4.56	-0	0	0
Trave 46	1007	10,,,	1,0,0	1 012	0.00	0	0	<u> </u>		•	Ü	
16 x 32	1099	1078	Peso Proprio	UnifG	0.00	0	0	0	4.46	0	0	0
16 x 32	1099	1078	QP Solai	PolG	0.00	0	0	0	4.46	0	0	0
16 x 32	1099	1078	QFissi Solai	PolG	0.00	0	0	2	4.46	0	0	2
16 x 32 16 x 32	1099 1099	1078 1078	QV Solai Neve	PolG PolL	0.00	0	0	0	4.46 4.46	0	0	0
16 x 32	1099	1078	Neve	PolL	0.00	0	0	0	4.46	0	0	0
Trave 48	1077	1070	11010	TOIL	0.00	0	0	O	1.10	O	O	0
16 x 32	1088	1112	Peso Proprio	UnifG	0.00	0	0	0	1.00	0	0	0
16 x 32	1088	1112	QP Solai	PolG	0.00	0	0	0	1.00	0	0	0
16 x 32	1088	1112	QFissi Solai	PolG	0.00	0	0	2	1.00	0	0	2
16 x 32	1088	1112	QV Solai	PolG	0.00	0	0	1	1.00	0	0	1
16 x 32 16 x 32	1088	1112 1112	Neve Neve	PolL PolL	0.00	-0 -0	0	0	1.00	-0 -0	0	0
Trave 49	1000	1112	Neve	TOIL	0.00	-0	U	U	1.00	-0	U	0
16 x 32	1087	1111	Peso Proprio	UnifG	0.00	0	0	0	1.00	0	0	0
16 x 32	1087		QP Solai	PolG	0.00	0	0	0	1.00	0	0	0
16 x 32	1087		QFissi Solai	PolG	0.00	0	0	2	1.00	0	0	2
16 x 32	1087		QV Solai	PolG	0.00	0	0	1	1.00	0	0	1
16 x 32 16 x 32	1087 1087	1111 1111	Neve Neve	PolL PolL	0.00	-0 -0	0	0	1.00	-0 -0	0	0
Trave 50	100/	1111	INEVE	FUIL	0.00	-0	U	U	1.00	-0	U	0
16 x 32	1086	1110	Peso Proprio	UnifG	0.00	0	0	0	1.00	0	0	0
16 x 32	1086	1110	QP Solai	PolG	0.00	0	0	0	1.00	0	0	0
16 x 32	1086		QFissi Solai	PolG	0.00	0	0	2	1.00	0	0	2
16 x 32	1086		QV Solai	PolG	0.00	0	0	1	1.00	0	0	1
16 x 32 16 x 32	1086 1086		Neve Neve	PolL PolL	0.00	-0 -0	0	0	1.00	-0 -0	0	0
Trave 51	1000	1110	INEVE	FOIL	0.00	-0	U	U	1.00	-0	U	0
16 x 32	1085	1109	Peso Proprio	UnifG	0.00	0	0	0	1.00	0	0	0
16 x 32	1085		QP Solai	PolG	0.00	0	0	0	1.00	0	0	0
16 x 32	1085		QFissi Solai	PolG	0.00	0	0	2	1.00	0	0	2
16 x 32	1085		QV Solai	PolG	0.00	0	0	1	1.00	0	0	1
16 x 32	1085		Neve	PolL	0.00	-0	0	0	1.00	-0	0	0
16 x 32 Trave 52	1085	1109	Neve	PolL	0.00	-0	0	0	1.00	-0	0	0
16 x 32	1084	1108	Peso Proprio	UnifG	0.00	0	0	0	1.00	0	0	0
16 x 32	1084		QP Solai	PolG	0.00	0	0	0	1.00	0	0	0
16 x 32	1084		QFissi Solai	PolG	0.00	0	0	2	1.00	0	0	2
-												

Sezione	Ni	Nf	Cond	Time	v:	OV:	OYi	07:	Vf	OVf	OYf	07f
16 x 32	1084	1108	Cond. QV Solai	Tipo c. PolG	Xi 0.00	QXi 0	0	QZi 1	Xf 1.00	QXf 0	0	QZf 1
16 x 32	1084	1108	Neve	PolL	0.00	-0	0	0	1.00	-0	0	0
16 x 32	1084	1108	Neve	PolL	0.00	-0	0	0	1.00	-0	0	0
Trave 53	1001	1100	11010	TOIL	0.00	0	U	U	1.00	0	U	U
16 x 32	1083	1107	Peso Proprio	UnifG	0.00	0	0	0	1.00	0	0	0
16 x 32	1083	1107	QP Solai	PolG	0.00	0	0	0	1.00	0	0	0
16 x 32	1083	1107	QFissi Solai	PolG	0.00	0	0	2	1.00	0	0	2
16 x 32	1083	1107	QV Solai	PolG	0.00	0	0	1	1.00	0	0	1
16 x 32	1083	1107	Neve	PolL	0.00	-0	0	0	1.00	-0	0	0
16 x 32	1083	1107	Neve	PolL	0.00	-0	0	0	1.00	-0	0	0
Trave 54		· ·					1	ı	1		l	
16 x 32	1074	1104	Peso Proprio	UnifG	0.00	0	0	0	1.00	0	0	0
16 x 32	1074	1104	QP Solai	PolG	0.00	0	0	0	1.00	0	0	0
16 x 32	1074	1104	QFissi Solai	PolG	0.00	0	0	1	1.00	0	0	1
16 x 32	1074	1104	QV Solai	PolG	0.00	0	0	0	1.00	0	0	0
16 x 32	1074	1104	Tamponamenti(G2)	UnifG	0.00	0	0	0	1.00	0	0	0
16 x 32	1074	1104	Neve	PolL	0.00	-0	0	0	1.00	-0	0	0
Trave 55												
16 x 32	1075	1105	Peso Proprio	UnifG	0.00	0	0	0	1.00	0	0	0
16 x 32	1075	1105	QP Solai	PolG	0.00	0	0	0	1.00	0	0	0
16 x 32	1075	1105	QFissi Solai	PolG	0.00	0	0	2	1.00	0	0	2
16 x 32	1075	1105	QV Solai	PolG	0.00	0	0	1	1.00	0	0	1
16 x 32	1075	1105	Tamponamenti(G2)	UnifG	0.00	0	0	0	1.00	0	0	0
16 x 32	1075	1105	Neve	PolL	0.00	-0	0	0	1.00	-0	0	0
16 x 32	1075	1105	Neve	PolL	0.00	-0	0	0	1.00	-0	0	0
Trave 56	1076	1106	D D :	11 :00	0.00	0	0	0	1.00	0	0	
16 x 32	1076	1106	Peso Proprio	UnifG	0.00	0	0	0	1.00	0	0	0
16 x 32	1076	1106	QP Solai	PolG	0.00	0	0	0	1.00	0	0	0
16 x 32	1076	1106	QFissi Solai	PolG	0.00	0	0	2	1.00	0	0	2
16 x 32	1076	1106	QV Solai	PolG	0.00	0	0	1	1.00	0	0	1
16 x 32 16 x 32	1076	1106	Neve	PolL PolL	0.00	-0 -0	0	0	1.00	-0 -0	0	0
Trave 71	1076	1106	Neve	POIL	0.00	-0	U	U	1.00	-0	U	U
16 x 32	1071	1114	Peso Proprio	UnifG	0.00	0	0	0	1.00	0	0	0
16 x 32	1071	1114	QP Solai	PolG	0.00	0	0	0	1.00	0	0	0
16 x 32	1071	1114	QFissi Solai	PolG	0.00	0	0	1	1.00	0	0	1
16 x 32	1071	1114	QV Solai	PolG	0.00	0	0	0	1.00	0	0	0
16 x 32	1071	1114	Tamponamenti(G2)	UnifG	0.00	0	0	0	1.00	0	0	0
16 x 32	1071	1114	Neve Neve	PolL	0.00	0	0	0	1.00	0	0	0
Trave 72	10,1		2,0,0	1012	0.00	ŭ	Ů,	0	1.00		v	v
16 x 32	1077	1115	Peso Proprio	UnifG	0.00	0	0	0	1.00	0	0	0
16 x 32	1077		QP Solai	PolG	0.00	0	0	0	1.00	0	0	0
16 x 32	1077	1115	QFissi Solai	PolG	0.00	0	0	2	1.00	0	0	2
16 x 32	1077	1115	QV Solai	PolG	0.00	0	0	1	1.00	0	0	1
16 x 32		1115	Neve	PolL	0.00	0	0	0	1.00	0	0	0
16 x 32	1077	1115	Neve	PolL	0.00	0	0	0	1.00	0	0	0
Trave 73				,						· ·	·	
16 x 32	1078	1116	Peso Proprio	UnifG	0.00	0	0	0	1.00	0	0	0
16 x 32		1116	QP Solai	PolG	0.00	0	0	0	1.00	0	0	0
16 x 32		1116	QFissi Solai	PolG	0.00	0	0	2	1.00	0	0	2
16 x 32	1078	1116	QV Solai	PolG	0.00	0	0	1	1.00	0	0	1
16 x 32	1078	1116	Neve	PolL	0.00	0	0	0	1.00	0	0	0
16 x 32	1078	1116	Neve	PolL	0.00	0	0	0	1.00	0	0	0
Trave 74	1070	111-		** '05	0.00			-	1.00			
16 x 32	1079	1117	Peso Proprio	UnifG	0.00	0	0	0	1.00	0	0	0
16 x 32	1079	1117	QP Solai	PolG	0.00	0	0	0	1.00	0	0	0
16 x 32	1079	1117	QFissi Solai	PolG	0.00	0	0	2	1.00	0	0	2
16 x 32	1079	1117	QV Solai	PolG	0.00	0	0	1	1.00	0	0	1
16 x 32	1079	1117	Neve	PolL	0.00	0	0	0	1.00	0	0	0
16 x 32	1079	1117	Neve	PolL	0.00	0	0	0	1.00	0	0	0
Trave 75	1072	1110	D D	11 .00	0.00	0	0	0	1.00	0	0	0
16 x 32	1073	1119	Peso Proprio QP Solai	UnifG	0.00	0	0	0	1.00	0	0	0
16 x 32 16 x 32	1073 1073	1119 1119	QF Solai QFissi Solai	PolG	0.00	0	0	0	1.00	0	0	0
16 x 32	1073	1119	QF1881 Solai QV Solai	PolG PolG	0.00	0	0	1	1.00	0	0	1
16 x 32	1073	1119	Neve		0.00	0	0	0	1.00	0	0	0
10 X 32	10/3	1119	Neve	PolL	0.00	U	U	U	1.00	U	U	U

Cariona	NI: NI	c	Cond	Time	v:	ov:	ov:	07:	Vf	OVf	OVf	07f
Sezione 16 x 32	Ni N 1073 11		Cond. Neve	Tipo c. PolL	Xi 0.00	QXi 0	QYi 0	QZi 0	Xf 1.00	QXf 0	QYf 0	QZf 0
Trave 76	10/3 11	19	Neve	FOIL	0.00	U	U	U	1.00	0	U	U
16 x 32	1080 112	20	Peso Proprio	UnifG	0.00	0	0	0	1.00	0	0	0
16 x 32	1080 112	_	QP Solai	PolG	0.00	0	0	0	1.00	0	0	0
16 x 32	1080 112		QFissi Solai	PolG	0.00	0	0	2	1.00	0	0	2
16 x 32	1080 112		QV Solai	PolG	0.00	0	0	1	1.00	0	0	1
16 x 32	1080 112		Neve	PolL	0.00	0	0	0	1.00	0	0	0
16 x 32	1080 112	_	Neve	PolL	0.00	0	0	0	1.00	0	0	0
Trave 77	1000 112	20	Neve	TOIL	0.00	0	U	U	1.00	0	U	- 0
16 x 32	1081 112	21	Peso Proprio	UnifG	0.00	0	0	0	1.00	0	0	0
16 x 32	1081 112		QP Solai	PolG	0.00	0	0	0	1.00	0	0	0
16 x 32	1081 112	_	QFissi Solai	PolG	0.00	0	0	2	1.00	0	0	2
16 x 32	1081 112	_	OV Solai	PolG	0.00	0	0	1	1.00	0	0	1
16 x 32	1081 112		Neve	PolL	0.00	0	0	0	1.00	0	0	0
16 x 32	1081 112		Neve	PolL	0.00	0	0	0	1.00	0	0	0
Trave 78	1001 112		11010	TOIL	0.00	0	0	0	1.00	0	U	
16 x 32	1082 112	22	Peso Proprio	UnifG	0.00	0	0	0	1.00	0	0	0
16 x 32	1082 112		QP Solai	PolG	0.00	0	0	0	1.00	0	0	0
16 x 32	1082 112		QFissi Solai	PolG	0.00	0	0	2	1.00	0	0	2
16 x 32	1082 112		QV Solai	PolG	0.00	0	0	1	1.00	0	0	1
16 x 32	1082 112		Neve Neve	PolL	0.00	0	0	0	1.00	0	0	0
16 x 32	1082 112		Neve	PolL	0.00	0	0	0	1.00	0	0	0
Trave 79	1004 11.	کے	INEVE	FUIL	0.00	U	U	U	1.00	U	U	U
16 x 32	1072 112	22	Peso Proprio	UnifG	0.00	0	0	0	1.16	0	0	0
16 x 32	1072 112	_	QP Solai	PolG	0.00	0	0	0	1.10	0	0	0
		_				-	-					1
16 x 32	1072 113	_	QFissi Solai	PolG	0.00	0	0	0	1.00	0	0	
16 x 32	1072 112 1072 112		QV Solai	PolG	0.00	0	0	0	1.00	0	0	0
16 x 32	10/2 11.	23	Neve	PolL	0.00	U	U	U	1.00	U	U	U
Trave 80	1002 10	76	D Di-	II:£C	0.00	0	0	0	150	0	0	0
16 x 32	1092 10		Peso Proprio	UnifG	0.00	0	0	0	4.56	0	0	0
16 x 32	1092 10		QP Solai	PolG	0.00	0	0	0	4.56	0	0	0
16 x 32	1092 10		QFissi Solai	PolG	0.00	0	0	2	4.56	0	0	2
16 x 32	1092 10	_	QV Solai	PolG	0.00	0	0	1	4.56	0	0	1
16 x 32	1092 10	_	Neve	PolL	0.00	0	0	0	4.56	0	0	0
16 x 32	1092 10	/6	Neve	PolL	0.00	0	0	0	4.56	0	0	0
Trave 82	1002 10	71	D D '	11 .00	0.00	0	0	0	1.16	0	0	0
16 x 32	1093 10	_	Peso Proprio	UnifG	0.00	0	0	0	4.46	0	0	0
16 x 32	1093 10	_	QP Solai	PolG	0.00	0	0	0	4.46	0	0	0
16 x 32	1093 10	_	QFissi Solai	PolG	0.00	0	0	1	4.46	0	0	1
16 x 32	1093 10		QV Solai	PolG	0.00	0	0	0	4.46	0	0	0
16 x 32	1093 10	/1	Neve	PolL	0.00	0	0	0	4.46	0	0	0
Trave 83	1050 100			77 100	0.00				4 40			
16 x 32	1079 10	/3	Peso Proprio	UnifG	0.00	0	0	0	1.42	0	0	0
Trave 84	1000 100	0.0		77 100	0.00			-	4.40			
20x40	1098 109	92	Peso Proprio	UnifG	0.00	0	0	1	1.42	0	0	1
Trave 85	1007 10	7.6	n n · 1	TT '00	0.00	0	0	0	1.40	0		
16 x 32	1086 10	/6	Peso Proprio	UnifG	0.00	0	0	0	1.42	0	0	0
Trave 88	1072 12	0.4	B 5 1	77 100	0.00	^		^	4.42			^
16 x 32	1072 109		Peso Proprio	UnifG	0.00	0	0	0	4.46	0	0	0
16 x 32	1072 109	_	QP Solai	PolG	0.00	0	0	0	4.46	0	0	0
16 x 32	1072 109	_	QFissi Solai	PolG	0.00	0	0	1	4.46	0	0	1
16 x 32	1072 109	_	QV Solai	PolG	0.00	0	0	0	4.46	0	0	0
16 x 32	1072 109	94	Neve	PolL	0.00	-0	0	0	4.46	-0	0	0
Trave 89		T		** ***	0.00				0.50			
16 x 32	0 10		Peso Proprio	UnifG	0.00	0	0	0	2.50	0	0	0
16 x 32	0 10		QP Solai	PolG	0.00	0	0	0	2.50	0	0	0
16 x 32	0 10		QFissi Solai	PolG	0.00	0	0	2	2.50	0	0	2
16 x 32	0 10		QV Solai	PolG	0.00	0	0	1	2.50	0	0	1
16 x 32	0 10		Neve	PolL	0.00	0	0	0	2.50	0	0	0
16 x 32	0 10	75	Neve	PolL	0.00	0	0	0	2.50	0	0	0
Trave 93												
16 x 32	1075 11	75	Peso Proprio	UnifG	0.00	0	0	0	1.45	0	0	0
Trave 94												
16 x 32		00	Peso Proprio	UnifG	0.00	0	0	0	2.50	0	0	0
16 x 32		00	QP Solai	PolG	0.00	0	0	0	2.50	0	0	0
16 x 32	1175 10	00	QFissi Solai	PolG	0.00	0	0	2	2.50	0	0	2

Sezione	Ni	Nf	Cond.	Tipo c.	Xi	QXi	QYi	QZi	Xf	QXf	QYf	QZf
16 x 32	1175	100	QV Solai	PolG	0.00	0	0	1	2.50	0	0	1
16 x 32	1175	100	Neve	PolL	0.00	-0	0	0	2.50	-0	0	0
Trave 95	1	-			1							
16 x 32	100	0	Peso Proprio	UnifG	0.00	0	0	0	1.45	0	0	0
Trave 96												
16 x 32	1175	1275	Peso Proprio	UnifG	0.00	0	0	0	1.00	0	0	0
16 x 32	1175	1275	QP Solai	PolG	0.00	0	0	0	1.00	0	0	0
16 x 32	1175	1275	QFissi Solai	PolG	0.00	0	0	2	1.00	0	0	2
16 x 32	1175	1275	QV Solai	PolG	0.00	0	0	1	1.00	0	0	1
16 x 32	1175	1275	Neve	PolL	0.00	-0	0	0	1.00	-0	0	0
Generica 3	1275	1275	D D :	11 .00	0.00	0	0	0	0.60	0	0	0
12 x 16	1275	1375	Peso Proprio	UnifG	0.00	0	0	0	0.60	0	0	0
Generica 4 12 x 16	1375	1275	Peso Proprio	UnifG	0.00	0	0	0	1.00	0	0	0
12 x 16	1375	1275	QP Solai	PolG	0.00	0	0	0	1.00	0	0	0
12 x 16	1375	1275	QFissi Solai	PolG	0.00	0	0	0	1.00	0	0	0
12 x 16	1375	1275	QV Solai	PolG	0.00	0	0	0	1.00	0	0	0
Generica 5	1373	12/3	Q v Bolai	1010	0.00	O	U	U	1.00	0	U	U
12 x 16	1275	200	Peso Proprio	UnifG	0.00	0	0	0	2.50	0	0	0
12 x 16	1275	200	QP Solai	PolG	0.00	0	0	0	2.50	0	0	0
12 x 16	1275	200	QFissi Solai	PolG	0.00	0	0	0	2.50	0	0	0
12 x 16	1275	200	QV Solai	PolG	0.00	0	0	0	2.50	0	0	0
Generica 113	3			'	'	'	<u>'</u>	'	'	'	'	
12 x 16	1110	1111	Peso Proprio	UnifG	0.00	0	0	0	1.42	0	0	0
12 x 16	1110	1111	Tamponamenti(G2)	UnifG	0.00	0	0	0	1.43	0	0	0
Generica 114	1											
12 x 16	1111	1112	Peso Proprio	UnifG	0.00	0	0	0	1.43	0	0	0
12 x 16	1111	1112	Tamponamenti(G2)	UnifG	0.00	0	0	0	1.43	0	0	0
Generica 115					1					- 1	_	
12 x 16	1112	1104	Peso Proprio	UnifG	0.00	0	0	0	1.42	0	0	0
12 x 16	1112	1104	Tamponamenti(G2)	UnifG	0.00	0	0	0	1.43	0	0	0
Generica 110		1107	D D :	11 .00	0.00	0	0	0	1 42	0	0	0
12 x 16	1105	1107	Peso Proprio	UnifG	0.00	0	0	0	1.42	0	0	0
12 x 16	1105	1107	Tamponamenti(G2)	UnifG	0.00	0	0	U	1.43	0	0	0
Generica 11 7 12 x 16	1107	1108	Peso Proprio	UnifG	0.00	0	0	0	1.42	0	0	0
12 x 16	1107	1108	Tamponamenti(G2)	UnifG	0.00	0	0	0	1.42	0	0	0
Generica 118		1100	Tamponamenu(G2)	OilliG	0.00	U	U	U	1.42	0	U	U
12 x 16	1108	1109	Peso Proprio	UnifG	0.00	0	0	0	1.42	0	0	0
12 x 16	1108	1109	Tamponamenti(G2)	UnifG	0.00	0	0	0	1.43	0	0	0
Generica 119		1107	rumponumenti(G2)	Cinic	0.00	Ů	Ü	Ŭ	1.15	· ·	Ū	Ů
12 x 16	1109	1106	Peso Proprio	UnifG	0.00	0	0	0	1.42	0	0	0
12 x 16	1109	1106	Tamponamenti(G2)	UnifG	0.00	0	0	0	1.42	0	0	0
Generica 120)		*	'	,	'	'	<u>'</u>	· · · · ·	'	,	
12 x 16	1114	1115	Peso Proprio	UnifG	0.00	0	0	0	1.42	0	0	0
12 x 16	1114	1115	Tamponamenti(G2)	UnifG	0.00	0	0	0	1.43	0	0	0
Generica 121												
12 x 16	1115	1116	Peso Proprio	UnifG	0.00	0	0	0	1.43	0	0	0
12 x 16	1115	1116	Tamponamenti(G2)	UnifG	0.00	0	0	0	1.43	0	0	0
Generica 122		111=		** ***	0.00				4 /= 1			
12 x 16	1116	1117	Peso Proprio	UnifG	0.00	0	0	0	1.42	0	0	0
12 x 16		1117	Tamponamenti(G2)	UnifG	0.00	0	0	0	1.43	0	0	0
Generica 123		1120	n n	11. '00	0.00	0	0	Δ.	1.40	0	0	0
12 x 16 12 x 16	1119 1119	1120 1120	Peso Proprio Tamponamenti(G2)	UnifG UnifG	0.00	0	0	0	1.42	0	0	0
Generica 124		1120	ramponamenu(G2)	OilliG	0.00	U	U	U	1.42	U	U	U
12 x 16	1120	1121	Peso Proprio	UnifG	0.00	0	0	0	1.42	0	0	0
12 x 16	1120	1121	Tamponamenti(G2)	UnifG	0.00	0	0	0	1.43	0	0	0
Generica 125		1141	ramponumenti(02)	Cinto	5.50	U	U	U	1.10	0	U	U
12 x 16	1121	1122	Peso Proprio	UnifG	0.00	0	0	0	1.42	0	0	0
12 x 16	1121	1122	Tamponamenti(G2)	UnifG	0.00	0	0	0	1.42	0	0	0
Generica 120			1(/				-			- 1	-	-
12 x 16	1122	1123	Peso Proprio	UnifG	0.00	0	0	0	1.42	0	0	0
12 x 16	1122	1123	Tamponamenti(G2)	UnifG	0.00	0	0	0	1.43	0	0	0
Generica 127	7								,	'	'	
12 x 16	1117	1119	Peso Proprio	UnifG	0.00	0	0	0	1.42	0	0	0
	_	_		20	_	_	_	·	_	·		_

Sezione	Ni	Nf	Cond.	Tipo c.	Xi	QXi	QYi	QZi	Xf	QXf	QYf	QZf
Generica 1	28											
12 x 16	1110	1106	Peso Proprio	UnifG	0.00	0	0	0	1.42	0	0	0
Generica 1	31									-		
12 x 16	1275	1105	Peso Proprio	UnifG	0.00	0	0	0	1.45	0	0	0

Pareti - geometria e vincoli

Parete	Nodi	Tipo	Materiale	Criterio	N.P.	N.P.X	N.P.Y	Spess.
								m
1	1067-1064-1065-1066	Platea	Rck30	CLS Muri	160			0.40

Muri - Carichi

Par	Pan	Condizione	Tipo	Carico	Vert.1	Vert.2	Vert.3	Vert.4	Altezza	Peso sp.	Coesione	Ang. at.	K0
								kN/m^2	m	kN/m^3	kN/m^2	0	
1		Peso Proprio	Peso Proprio kN	1695.6 0									

Tabella solai tipo

Sol.N°	Descrizione	Spessore	QP	QF	QVar.	ψ0	ψ1	ψ2	Luce netta	Def	%QX	%QY
		m	kN/m^2	kN/m^2	kN/m [^]							
1	copertura in legno	0.35	0	2	1	0.00	0.00	0.00	No	No	100	0

Dati solai

Solaio n°	Nodi	Tipo
0	1275-1175-1275-1375	copertura in legno
0	1075-0-100-1175	copertura in legno
0	1105-1075-1175-1275	copertura in legno
0	1175-100-200-1275	copertura in legno
0	1095-1082-1072-1094	copertura in legno
1	1092-1073-1080-1097	copertura in legno
1	1097-1080-1081-1096	copertura in legno
1	1100-1077-1078-1099	copertura in legno
1	1099-1078-1079-1098	copertura in legno
1	1098-1079-1073-1092	copertura in legno
1	1093-1071-1077-1100	copertura in legno
1	1096-1081-1082-1095	copertura in legno
2	1087-1099-1098-1086	copertura in legno
2	1083-1095-1094-0-1075	copertura in legno
2	1084-1096-1095-1083	copertura in legno
2	1085-1097-1096-1084	copertura in legno
2	1076-1092-1097-1085	copertura in legno

Solaio n°	Nodi	Tipo
2	1086-1098-1092-1076	copertura in legno
2	1074-1093-1100-1088	copertura in legno
2	1088-1100-1099-1087	copertura in legno
3	1080-1120-1121-1081	copertura in legno
3	1073-1119-1120-1080	copertura in legno
3	1079-1117-1119-1073	copertura in legno
3	1082-1122-1123-1072	copertura in legno
3	1078-1116-1117-1079	copertura in legno
3	1077-1115-1116-1078	copertura in legno
3	1071-1114-1115-1077	copertura in legno
3	1081-1121-1122-1082	copertura in legno
4	1111-1087-1086-1110	copertura in legno
4	1112-1088-1087-1111	copertura in legno
4	1106-1076-1085-1109	copertura in legno
4	1109-1085-1084-1108	copertura in legno
4	1108-1084-1083-1107	copertura in legno
4	1107-1083-1075-1105	copertura in legno
4	1104-1074-1088-1112	copertura in legno
4	1110-1086-1076-1106	copertura in legno

TABULATI DI VERIFICA

L'esito di ogni elaborazione viene sintetizzato nei disegni e schemi grafici allegati, che evidenziano i valori numerici nei punti e/o nelle sezioni significative, ai fini della valutazione del comportamento complessivo della struttura, e quelli necessari ai fini delle verifiche di misura della sicurezza.

Di seguito si riportano le tabelle relative a:

- Baricentri rigidezze e masse
- Forze sismiche e masse
- Spostamenti Relativi dei nodi (SLD)
- Fattori di partecipazione e masse modali
- Massime tensioni sul terreno platee
- Massimi spostamenti dei nodi
- Massime reazioni vincolari
- Massime sollecitazioni pilastri
- Massime sollecitazioni muri Discretizzati

Centri di rigidezza e Centri di massa

Scenario di calcolo : Set_NT_SLV_SLD_A2_STR/GEO

Centri rigidezze

Piano	Kx	Ky	Kxy	Κφ	X	Y	r/ls
	kN/m	kN/m	kN/m	kN*m/rad	m	m	
1	5.754671E03	6.118154E03	5.650871E00	2.649778E05	7.13	4.44	1.312

Ellissi delle rigidezze

Linssi dene rigidezi					
Piano	Κ_ξ	Κ_η	alfa	r_ξ	r_η

Piano	Κ_ξ	Κ_η	alfa	r_ξ	r_η
	kN/m	kN/m	0	m	m
1	5.754583E03	6.118242E03	-1	6.58	6.79

Baricentri masse per posizione masse

Piano	Pos.Masse	X	Y	Peso Sism.
		m	m	kN
	0 1	0.00	0.00	0.00
	1	6.74	5.29	311.26

Risultati Analisi Dinamica - Baricentri masse e masse

Scenario di calcolo : Set_NT_SLV_SLD_A2_STR/GEO

Combinazione masse 1

Piano	Rigido	Massa	X	Y	Z
		kN	m	m	m
0	No	0.00	0.00	0.00	0.00
1	Si	311.26	6.74	5.29	4.18

Verifica Degli Spostamenti Relativi

Scenario di calcolo : Set_NT_SLV_SLD_A2_STR/GEO

Interp.	Comb.	ηXv	ηXh	ηYv	ηYh	Nodo1	Nodo2	η	ηAmm	Cs
		m	m	m	m			m	m	
0-1	(28+29)-II-2	0.00	0.00	0.00	0.01	1052	1071	0.01	0.04	3.71
0-1	(28+29)-II-2	0.00	0.00	0.00	0.01	1053	1072	0.01	0.04	4.42
0-1	(28+29)-II-2	0.00	0.00	0.00	0.01	1054	1073	0.01	0.04	2.77
0-1	(28+29)-I-3	0.00	0.01	0.00	0.00	1055	1074	0.01	0.04	3.70
0-1	(28+29)-I-3	0.00	0.01	0.00	0.00	1056	1075	0.01	0.04	3.70
0-1	(28+29)-II-2	0.00	0.00	0.00	0.01	1057	1076	0.01	0.04	3.12
0-1	(28+29)-II-2	0.00	0.00	0.00	0.01	1058	1084	0.01	0.04	3.39
0-1	(28+29)-II-2	0.00	0.00	0.00	0.01	1059	1087	0.01	0.04	3.28
0-1	(28+29)-II-2	0.00	0.00	0.00	0.01	1060	1078	0.01	0.04	2.91
0-1	(28+29)-II-2	0.00	0.00	0.00	0.01	1061	1081	0.01	0.04	3.01
0-1	(28+29)-I-3	0.00	0.02	0.00	0.00	1068	1093	0.02	0.04	2.55
0-1	(28+29)-I-3	0.00	0.02	0.00	0.00	1069	1092	0.02	0.04	2.55
0-1	(28+29)-I-3	0.00	0.02	0.00	0.00	1153	1094	0.02	0.04	2.55
0-1	(28+29)-I-3	0.00	0.01	0.00	0.00	1156	0	0.01	0.04	3.11
0-1	(28+29)-I-3	0.00	0.01	0.00	0.00	1156	1175	0.01	0.04	3.69
0-1	(28+29)-I-3	0.00	0.01	0.00	0.00	1256	100	0.01	0.04	3.11
				Minir	no					
0-1	(28+29)-I-3	0.00	0.02	0.00	0.00	1069	1092	0.02	0.04	2.55

Periodi di vibrazione e Masse modali

Scenario di calcolo : Set_NT_SLV_SLD_A2_STR/GEO

Posizione masse 1

Numero di Frequenze calcolate =35, filtrate=6

N	T(s)	Coeff. Part	ecipazione	Masse	Modali	Percei	ntuali	
					kgm*g			
		Dir=0°	Dir=90°	Dir=0°	Dir=90°	Dir=0°	Dir=90°	
1(1)	0.4795	53.907	-4.292	28498	181	91.55	0.58	
2(2)	0.4619	-4.042	-55.133	160	29809	0.51	95.77	
3(3)	0.3428	3.232	6.442	102	407	0.33	1.31	
4(4)	0.2740	7.189	1.135	507	13	1.63	0.04	
5(5)	0.2397	13.714	-1.736	1844	30	5.93	0.09	
6(6)	0.1719	-0.474	-7.967	2	622	0.01	2.00	
Somma delle Masse Modali [kgm*g]			31114	31061				
Masse strutturali libere [kgm*g]			31126	31126				
Percentuale			99.96	99.79	99.96	99.79		

Risultati Analisi Dinamica - Sollecitazioni massime - Sigma terreno platea

Muro	Cx	Су	Cz	Sigma
	m	m	m	kN/m^2
1	14.700	-1.000	0.000	13(6)
1	14.700	9.800	0.000	16(2)
1	-1.000	9.800	0.000	18(2)
1	-1.000	-1.000	0.000	17(3)
1	14.700	0.080	0.000	13(6)
1	14.700	1.160	0.000	13(6)
1	14.700	2.240	0.000	13(6)
1	14.700	3.320	0.000	13(6)
1	14.700	4.400	0.000	13(6)
1	14.700	5.480	0.000	13(3)
1	14.700	6.560	0.000	14(2)
1	14.700	7.640	0.000	14(2)
1	14.700	8.720	0.000	15(2)
1	13.719	9.800	0.000	17(2)
1	12.737	9.800	0.000	18(2)
1	11.756	9.800	0.000	19(2)
1	10.775	9.800	0.000	19(2)
1	9.794	9.800	0.000	20(2)
1	8.813	9.800	0.000	20(2)
1	7.831	9.800	0.000	20(2)
1	6.850	9.800	0.000	20(2)
1	5.869	9.800	0.000	20(2)
1	4.887	9.800	0.000	20(2)
1	3.906	9.800	0.000	20(2)
1	2.925	9.800	0.000	20(2)
1	1.944	9.800	0.000	19(2)
1	0.963	9.800	0.000	19(2)
1	-0.019	9.800	0.000	18(2)
1	-1.000	8.720	0.000	17(2)
1	-1.000	7.640	0.000	16(2)
1	-1.000	6.560	0.000	16(2)
1	-1.000	5.480	0.000	16(2)

Muro	Cx	Су	Cz	Sigma
1	-1.000	4.400	0.000	16(3)
1	-1.000	3.320	0.000	16(3)
1	-1.000	2.240	0.000	16(3)
1	-1.000 -1.000	1.160 0.080	0.000	16(3) 16(3)
1	-0.019	-1.000	0.000	17(3)
1	0.962	-1.000	0.000	18(3)
1	1.944	-1.000	0.000	18(3)
1	2.925	-1.000	0.000	19(3)
1	3.906	-1.000	0.000	19(3)
1	4.887	-1.000	0.000	19(3)
1	5.869	-1.000	0.000	19(3)
1	6.850	-1.000	0.000	19(3)
1	7.831 8.813	-1.000 -1.000	0.000	19(3) 19(3)
1	9.794	-1.000	0.000	18(3)
1	10.775	-1.000	0.000	17(3)
1	11.756	-1.000	0.000	16(3)
1	12.737	-1.000	0.000	15(3)
1	13.719	-1.000	0.000	14(3)
1	13.742	1.065	0.000	13(3)
1	13.751	2.137	0.000	13(3)
1	13.756	3.254	0.000	13(3)
1	13.762 13.748	4.394	0.000	14(3)
1	13.765	5.494 6.577	0.000	14(3) 14(2)
1	13.749	7.705	0.000	15(2)
1	13.755	8.806	0.000	16(2)
1	12.850	9.000	0.000	17(2)
1	11.400	9.000	0.000	18(2)
1	10.679	8.879	0.000	18(2)
1	9.673	8.650	0.000	18(2)
1	8.550	9.000	0.000	19(2)
1	7.780	8.934	0.000	19(2)
1	6.803 5.700	8.537 9.000	0.000	19(2) 19(2)
1	4.870	9.003	0.000	19(2)
1	3.915	8.719	0.000	19(2)
1	2.850	9.000	0.000	19(2)
1	1.904	8.921	0.000	18(2)
1	0.948	8.897	0.000	18(2)
1	0.000	9.000	0.000	17(2)
1	-0.042	7.795	0.000	16(2)
1	-0.035	6.673 5.552	0.000	16(2)
1 1	-0.014 0.000	4.450	0.000	16(2) 16(3)
1	-0.024	3.266	0.000	16(3)
1	-0.023	2.135	0.000	16(3)
1	-0.019	1.058	0.000	16(3)
1	0.000	0.000	0.000	17(3)
1	0.952	-0.036	0.000	17(3)
1	1.915	-0.057	0.000	18(3)
1	2.850	0.000	0.000	18(3)
1	3.933 4.914	0.114 -0.252	0.000 0.000	18(3) 19(3)
1 1	5.831	-0.252	0.000	19(3)
1	6.826	-0.410	0.000	19(3)
1	7.786	-0.383	0.000	19(3)
1	8.729	-0.347	0.000	18(3)
1	9.718	0.031	0.000	17(3)
1	10.685	-0.071	0.000	16(3)
1	11.400	0.000	0.000	16(3)
1	12.650	-0.006	0.000	15(3)
1	13.703	0.035	0.000	13(3)
1	6.854	7.111	0.000	17(2)

Muro	Cx	Су	Cz	Sigma
1	6.904	2.686	0.000	17(3)
1	6.838	1.281	0.000	17(3)
1	6.776	0.285	0.000	18(3)
1	12.703	4.360	0.000	15(3)
1	11.400	4.450	0.000	16(3)
1	10.108	4.400	0.000	16(3)
1	8.664	4.564	0.000	16(3)
1	11.448	5.524	0.000	16(3)
1	11.400	6.500	0.000	16(2)
1	11.600	7.830	0.000	17(2)
1	12.687	5.470	0.000	15(3)
1	12.850	6.500	0.000	15(2)
1	12.762	7.759	0.000	16(2)
1	8.607	8.320	0.000	18(2)
1	8.714	7.642	0.000	17(2)
1	8.909	6.883	0.000	17(2)
1	8.918	5.771	0.000	16(3)
1	7.916	6.884	0.000	17(2)
1	7.940	5.916	0.000	17(2)
1	7.936	8.280	0.000	18(2)
1	7.991	7.627	0.000	18(2)
1	7.408	7.650	0.000	18(2)
1	7.382	8.156	0.000	18(2)
1	10.055	7.259	0.000	17(2)
1	10.132	5.739	0.000	16(3)
1	9.211	8.236	0.000	18(2)
1	9.327	7.712	0.000	17(2)
1	10.778	7.989	0.000	17(2)
1	11.484	3.068	0.000	15(3)
1	11.512	1.804	0.000	15(3)
1	11.623	0.861	0.000	15(3)
1	12.673	3.169	0.000	14(3)
1	12.667	2.016	0.000	14(3)
1	12.671	0.984	0.000	14(3)
1	8.631	3.002	0.000	16(3)
1	8.809	1.774	0.000	16(3)
1	8.628	0.922	0.000	17(3)
1	8.550	0.000	0.000	18(3)
1	7.760	1.075	0.000	17(3)
1	7.824	1.845	0.000	17(3)
1	7.718	0.244	0.000	18(3)
1	10.061	1.347	0.000	16(3)
1	10.071	2.954	0.000	15(3)
1	10.789	0.713	0.000	16(3)
1	9.305	0.848	0.000	17(3)
1	9.191	0.293	0.000	17(3)
1	1.023	4.406	0.000	16(3)
1	2.254	4.395	0.000	16(2)
1	3.803	4.404	0.000	17(2)
1	5.700	4.450	-0.000	19(2)
1	2.229	5.693	0.000	16(2)
1	2.160	6.970	0.000	16(2)
1	1.939	7.973	0.000	17(2)
1	1.050	5.608	0.000	16(2)
1	1.025	6.779	0.000	16(2)
1	0.968	7.861	0.000	17(2)
1	5.001	5.762	0.000	18(2)
1	4.827	6.957	0.000	17(2)
1	4.949	7.742	0.000	18(2)
1	4.976	8.362	0.000	18(2)
1	5.817	6.901	0.000	18(2)
1	5.935	5.918	0.000	18(2)
1	5.658	8.300	0.000	18(2)
1	5.672	7.647	0.000	18(2)
1	6.242	8.160	0.000	18(2)
1	6.256	7.639	0.000	18(2)

Muro	Cx	Су	Cz	Sigma
1	3.591	7.414	0.000	17(2)
1	3.656	5.818	0.000	17(2)
1	2.794	8.129	0.000	18(2)
1	4.312	7.843	0.000	18(2)
1	4.401	8.308	0.000	18(2)
1	2.253	3.090	0.000	16(3)
1	2.182	1.821	0.000	16(3)
1	1.956	0.858	0.000	17(3)
1	1.057	3.190	0.000	16(3)
1	1.040	2.021	0.000	16(3)
1	0.982	0.975	0.000	16(3)
1	5.010	0.315	0.000	18(3)
1	5.019	1.048	0.000	18(3)
1	4.928	1.823	0.000	17(3)
1	5.301	2.982	0.000	18(3)
1	5.856	1.049	0.000	18(3)
1	5.700	0.000	0.000	19(3)
1	5.896	1.853	0.000	17(3)
1	3.639	1.404	0.000	17(3)
1	3.749	2.970	0.000	17(3)
1	4.426	0.465	0.000	18(3)
1	4.362	0.972	0.000	18(3)
1	2.815	0.754	0.000	17(3)
Massimo assoluto				
1	7.831	9.800	0.000	20(2)
Minimo assoluto				
1	14.700	1.160	0.000	13(6)

Risultati Analisi Dinamica - Spostamenti massimi - Nodi

la tripletta (Cb [-SubC-Cbm]) indica la Combinazione - SottoCombinazione sismica - Posizione Masse, nel caso non sismico mancano SubC-Cbm

Nodo	Trasl. X	Trasl. Y	Trasl. Z	Rotaz. X	Rotaz. Y	Rotaz. Z
	m	m	m	0	0	0
0	-0.01(12-II-1)	0.01(13-I-1)	-0.00(2)	-0.04(13-I-1)	-0.03(12-II-1)	-0.06(12-II-1)
100	-0.01(12-II-1)	0.01(13-I-1)	-0.00(2)	-0.05(13-I-1)	0.02(12-I-1)	0.04(13-II-1)
200	-0.01(12-II-1)	0.01(13-I-1)	-0.00(12-I-1)	-0.04(13-I-1)	0.03(12-I-1)	0.03(13-II-1)
1052	0.00(1)	0.00(1)	-0.00(3)	0.00(13-II-1)	0.00(12-I-1)	0.00(1)
1053	0.00(1)	0.00(1)	-0.00(3)	0.00(13-II-1)	-0.00(3)	0.00(1)
1054	0.00(1)	0.00(1)	-0.00(3)	0.00(13-II-1)	-0.00(12-II-1)	0.00(1)
1055	0.00(1)	0.00(1)	-0.00(2)	-0.00(13-I-1)	0.00(12-I-1)	0.00(1)
1056	0.00(1)	0.00(1)	-0.00(2)	-0.00(13-I-1)	-0.00(12-II-1)	0.00(1)
1057	0.00(1)	0.00(1)	-0.00(2)	-0.00(2)	0.00(12-I-1)	0.00(1)
1058	0.00(1)	0.00(1)	-0.00(2)	-0.00(2)	-0.00(12-II-1)	0.00(1)
1059	0.00(1)	0.00(1)	-0.00(2)	-0.00(2)	0.00(12-I-1)	0.00(1)
1060	0.00(1)	0.00(1)	-0.00(3)	0.00(13-II-1)	0.00(12-I-1)	0.00(1)
1061	0.00(1)	0.00(1)	-0.00(3)	0.00(13-II-1)	-0.00(12-II-1)	0.00(1)
1064	0.00(1)	0.00(1)	-0.00(1)	0.00(13-II-1)	-0.00(3)	0.00(1)
1065	0.00(1)	0.00(1)	-0.00(2)	-0.00(13-I-1)	-0.00(2)	0.00(1)
1066	0.00(1)	0.00(1)	-0.00(2)	-0.00(13-I-1)	0.00(12-I-1)	0.00(1)
1067	0.00(1)	0.00(1)	-0.00(3)	0.00(13-II-1)	0.00(2)	0.00(1)
1068	0.00(1)	0.00(1)	-0.00(3)	0.00(13-II-1)	-0.00(12-II-1)	0.00(1)
1069	0.00(1)	0.00(1)	-0.00(2)	0.00(13-II-1)	0.00(12-I-1)	0.00(1)
1071	0.01(12-I-1)	0.01(13-I-1)	-0.00(3)	-0.11(13-I-1)	0.06(2)	0.04(12-II-1)
1072	-0.01(12-II-1)	0.01(13-I-1)	-0.00(13-II-1)	-0.10(13-I-1)	-0.06(3)	-0.05(13-I-1)
1073	-0.01(12-II-1)	0.01(13-I-1)	-0.00(3)	-0.08(2)	0.03(12-I-1)	0.03(12-II-1)
1074	-0.01(12-II-1)	0.01(13-I-1)	-0.00(2)	0.10(13-II-1)	0.06(2)	0.03(13-I-1)

Nodo	Trasl. X	Trasl. Y	Trasl. Z	Rotaz. X	Rotaz. Y	Rotaz. Z
1075	-0.01(12-II-1)	0.01(13-I-1)	-0.00(2)	0.02(13-II-1)	-0.05(12-II-1)	0.06(13-II-1)
1076	-0.01(12-II-1)	0.01(13-I-1)	-0.00(2)	0.09(3)	0.04(12-I-1)	0.01(13-I-1)
1077	-0.01(12-II-1)	0.01(13-I-1)	-0.00(3)	-0.14(2)	-0.01(12-I-1)	0.04(13-I-1)
1078	-0.01(12-II-1)	0.01(13-I-1)	-0.00(3)	-0.15(2)	-0.04(12-II-1)	0.03(12-II-1)
1079	-0.01(12-II-1)	0.01(13-I-1)	-0.00(3)	-0.14(2)	0.01(12-II-1)	0.03(12-II-1)
1080	-0.01(12-II-1)	0.01(13-I-1)	-0.00(3)	-0.13(2)	-0.01(12-I-1)	-0.03(12-I-1)
1081	-0.01(12-II-1)	0.01(13-I-1)	-0.00(3)	-0.15(2)	0.04(12-I-1)	0.04(13-II-1)
1082	-0.01(12-II-1)	0.01(13-I-1)	-0.00(3)	-0.14(2)	0.01(12-II-1)	0.06(13-II-1)
1083	-0.01(12-II-1)	0.01(13-I-1)	-0.00(2)	0.14(3)	0.02(12-II-1)	0.06(13-II-1)
1084	-0.01(12-II-1)	0.01(13-I-1)	-0.00(2)	0.15(3)	0.04(12-I-1)	0.04(13-II-1)
1085	-0.01(12-II-1)	0.01(13-I-1)	-0.00(2)	0.14(3)	-0.02(12-I-1)	0.02(13-II-1)
1086	-0.01(12-II-1)	0.01(13-I-1)	-0.00(2)	0.15(3)	0.02(12-II-1)	0.01(13-I-1)
1087	-0.01(12-II-1)	0.01(13-I-1)	-0.00(2)	0.16(3)	-0.05(12-II-1)	0.02(13-I-1)
1088	-0.01(12-II-1)	0.01(13-I-1)	-0.00(3)	0.15(3)	-0.01(12-I-1)	0.03(13-I-1)
1092	-0.02(12-II-1)	0.01(13-I-1)	-0.00(2)	-0.07(13-I-1)	-0.01(12-II-1)	0.02(12-II-1)
1093	-0.02(12-II-1)	0.01(13-I-1)	-0.00(3)	-0.04(13-I-1)	0.26(2)	0.05(13-I-1)
1094	-0.02(12-II-1)	0.01(13-I-1)	-0.00(3)	0.03(13-II-1)	-0.25(3)	-0.07(13-I-1)
1095	-0.02(12-II-1)	0.01(13-I-1)	-0.01(3)	-0.01(13-II-1)	-0.17(2)	-0.08(13-I-1)
1096	-0.02(12-II-1)	0.01(13-I-1)	-0.01(3)	-0.02(13-II-1)	0.06(3)	0.05(13-II-1)
1097	-0.02(12-II-1)	0.01(13-I-1)	-0.00(2)	-0.01(13-I-1)	0.19(3)	0.02(13-II-1)
1098	-0.02(12-II-1)	0.01(13-I-1)	-0.00(2)	-0.01(13-I-1)	-0.20(2)	-0.02(12-I-1)
1099	-0.02(12-II-1)	0.01(13-I-1)	-0.01(2)	-0.02(13-II-1)	-0.06(2)	-0.04(13-II-1)
1100	-0.02(12-II-1)	0.01(13-I-1)	-0.01(2)	-0.01(13-II-1)	0.17(2)	0.06(13-I-1)
1104	-0.01(12-II-1)	0.01(13-I-1)	-0.00(13-I-1)	0.10(13-II-1)	0.03(13-II-1)	0.01(12-II-1)
1105	-0.01(12-II-1)	0.01(13-I-1)	-0.00(13-I-1)	0.02(13-II-1)	0.02(12-I-1)	0.04(13-II-1)
1106	-0.01(12-II-1)	0.01(13-I-1)	0.00(3)	0.08(3)	0.02(12-I-1)	0.01(13-II-1)
1107	-0.01(12-II-1)	0.01(13-I-1)	0.00(3)	0.12(3)	0.04(3)	0.04(13-II-1)
1108	-0.01(12-II-1)	0.01(13-I-1)	0.00(3)	0.13(3)	0.02(12-I-1)	0.03(13-II-1)
1109	-0.01(12-II-1)	0.01(13-I-1)	0.00(3)	0.13(3)	-0.02(12-I-1)	-0.02(13-I-1)
1110	-0.01(12-II-1)	0.01(13-I-1)	0.00(3)	0.13(3)	0.02(3)	0.01(12-II-1)
1111	-0.01(12-II-1)	0.01(13-I-1)	0.00(3)	0.13(3)	-0.03(12-II-1)	0.01(12-II-1)
1112	-0.01(12-II-1)	0.01(13-I-1)	-0.00(13-I-1)	0.13(3)	-0.04(2)	-0.01(13-II-1)
1114	0.01(12-I-1)	0.01(13-I-1)	-0.00(13-II-1)	-0.11(13-I-1)	0.03(13-I-1)	0.02(12-II-1)
1115	0.01(12-I-1)	0.01(13-I-1)	-0.00(13-II-1)	-0.12(2)	-0.04(3)	-0.02(12-I-1)
1116	0.01(12-I-1)	0.01(13-I-1)	0.00(2)	-0.13(2)	-0.02(12-II-1)	0.02(12-II-1)
1117	0.01(12-I-1)	0.01(13-I-1)	0.00(2)	-0.12(2)	0.02(3)	0.02(12-II-1)
1119	0.01(12-I-1)	0.01(13-I-1)	-0.00(13-II-1)	-0.08(2)	0.02(12-I-1)	0.02(12-II-1)
1120	0.01(12-I-1)	0.01(13-I-1)	0.00(2)	-0.12(2)	-0.02(2)	-0.02(12-I-1)
1121	0.01(12-I-1)	0.01(13-I-1)	0.00(2)	-0.12(2)	0.02(12-I-1)	0.03(13-II-1)
1122	0.01(12-I-1)	0.01(13-I-1)	-0.00(13-II-1)	-0.12(2)	0.03(3)	0.03(13-II-1)
1123	0.01(12-I-1)	0.01(13-I-1)	-0.00(13-II-1)	-0.09(13-I-1)	-0.04(13-I-1)	0.04(13-II-1)
1153	0.00(1)	0.00(1)	-0.00(3)	-0.00(13-I-1)	-0.00(12-II-1)	0.00(1)
1156	0.00(1)	0.00(1)	-0.00(2)	-0.00(13-I-1)	-0.00(12-II-1)	0.00(1)
1156	0.00(1)	0.00(1)	-0.00(2)	-0.00(13-I-1)	-0.00(12-II-1)	0.00(1)
1175	-0.01(12-II-1)	0.01(13-I-1)	-0.00(2)	0.03(13-II-1)	0.02(12-I-1)	0.04(13-II-1)
1256	0.00(1)	0.00(1)	-0.00(2)	-0.00(13-I-1)	-0.00(12-II-1)	0.00(1)
1275	-0.01(12-II-1)	0.01(13-I-1)	-0.00(13-I-1)	-0.04(13-I-1)	0.01(12-I-1)	0.04(13-II-1)
1275	-0.01(12-II-1)	0.01(13-I-1)	-0.00(2)	0.03(13-II-1)	0.02(12-I-1)	0.03(13-II-1)
1375	-0.01(12-II-1)	0.01(13-I-1)	-0.00(13-I-1)	-0.04(13-I-1)	0.02(12-I-1)	0.03(13-II-1)

Risultati Analisi Dinamica - Reazioni massime - Nodi

Nodo	Rx	Ry	Rz	Mx	My	Mz
	kN	kN	kN	kN*m	kN*m	kN*m
1052	1.86(12-II-1)	7.01(13-II-1)	0	0	0	-0.21(12-II-1)
1053	-1.89(12-I-1)	5.54(13-II-1)	0	0	0	0.47(12-I-1)
1054	5.75(12-II-1)	3.37(13-II-1)	0	0	0	-0.16(12-II-1)

Nodo	Rx	Ry	Rz	Mx	My	Mz
1055	2.11(12-II-1)	-5.35(13-I-1)	0	0	0	-0.13(13-I-1)
1056	-7.13(12-I-1)	-1.41(13-I-1)	0	0	0	-0.30(13-II-1)
1057	6.90(12-II-1)	-2.50(13-I-1)	0	0	0	-0.06(13-I-1)
1058	6.93(12-II-1)	-2.41(13-I-1)	0	0	0	-0.22(13-II-1)
1059	-6.83(12-I-1)	-2.46(13-I-1)	0	0	0	-0.12(13-I-1)
1060	-5.79(12-I-1)	3.33(13-II-1)	0	0	0	-0.15(12-II-1)
1061	5.75(12-II-1)	3.19(13-II-1)	0	0	0	-0.23(13-II-1)
1064	0	0	0	0	0	0
1065	0	0	0	0	0	0
1066	0	0	0	0	0	0
1067	0	0	0	0	0	0
1068	4.00(12-II-1)	7.20(13-II-1)	0	0	0	-0.30(13-I-1)
1069	-3.21(12-I-1)	-9.01(13-I-1)	0	0	0	-0.10(12-II-1)
1153	-3.95(12-I-1)	-6.40(13-I-1)	0	0	0	0.41(13-I-1)
1156	1.96(12-II-1)	-3.84(13-I-1)	0	0	0	-0.19(13-II-1)
1156	-2.42(12-I-1)	5.48(13-II-1)	0	0	0	0.33(12-II-1)
1256	2.41(12-II-1)	4.12(13-II-1)	0	0	0	-0.24(13-II-1)

Risultati Analisi Dinamica - Sollecitazioni massime - Inviluppi - Pilastri

Asta	N.in.	N	Ту	Tz	Mt	My	Mz
	N.fin.	kN	kN	kN	kN*m	kN*m	kN*m
1	1052	-18.74(3)	-1.86(12-II-1)	-7.01(13-II-1)	0.21(12-II-1)	15.45(13-II-1)	-3.54(12-II-1)
	1071	-16.65(3)	-1.86(12-II-1)	-7.01(13-II-1)	0.21(12-II-1)	-12.02(13-II-1)	3.75(12-II-1)
2	1053	-19.49(3)	1.89(12-I-1)	-5.54(13-II-1)	-0.31(13-I-1)	12.42(13-II-1)	3.60(12-I-1)
	1072	-17.41(3)	1.89(12-I-1)	-5.54(13-II-1)	-0.31(13-I-1)	-9.30(13-II-1)	-3.80(12-I-1)
3	1054	-34.94(3)	-3.37(13-II-1)	5.75(12-II-1)	0.16(12-II-1)	-11.86(12-II-1)	-6.54(13-II-1)
	1073	-32.85(3)	-3.37(13-II-1)	5.75(12-II-1)	0.16(12-II-1)	10.68(12-II-1)	6.67(13-II-1)
4	1055	-20.37(2)	-2.11(12-II-1)	5.35(13-I-1)	0.13(13-I-1)	-12.88(13-I-1)	-4.58(12-II-1)
	1074	-18.02(2)	-2.11(12-II-1)	5.35(13-I-1)	0.13(13-I-1)	10.75(13-I-1)	4.75(12-II-1)
5	1056	-25.75(2)	1.41(13-I-1)	-7.13(12-I-1)	0.30(13-II-1)	16.21(12-I-1)	3.14(13-I-1)
	1075	-23.39(2)	1.41(13-I-1)	-7.13(12-I-1)	0.30(13-II-1)	-15.29(12-I-1)	-3.11(13-I-1)
6	1057	-36.30(2)	2.50(13-I-1)	6.90(12-II-1)	0.06(13-I-1)	-15.96(12-II-1)	5.40(13-I-1)
	1076	-33.95(2)	2.50(13-I-1)	6.90(12-II-1)	0.06(13-I-1)	14.55(12-II-1)	-5.65(13-I-1)
22	1058	-46.05(2)	2.41(13-I-1)	6.93(12-II-1)	0.22(13-II-1)	-16.00(12-II-1)	5.12(13-I-1)
	1084	-43.69(2)	2.41(13-I-1)	6.93(12-II-1)	0.22(13-II-1)	14.65(12-II-1)	-5.53(13-I-1)
23	1059	-48.22(2)	2.46(13-I-1)	-6.83(12-I-1)	0.12(13-I-1)	15.76(12-I-1)	5.25(13-I-1)
	1087	-45.86(2)	2.46(13-I-1)	-6.83(12-I-1)	0.12(13-I-1)	-14.43(12-I-1)	-5.63(13-I-1)
24	1060	-47.48(3)	-3.33(13-II-1)	-5.79(12-I-1)	0.15(12-II-1)	11.88(12-I-1)	-6.39(13-II-1)
	1078	-45.39(3)	-3.33(13-II-1)	-5.79(12-I-1)	0.15(12-II-1)	-10.82(12-I-1)	6.65(13-II-1)
25	1061	-47.41(3)	-3.19(13-II-1)	5.75(12-II-1)	0.23(13-II-1)	-11.82(12-II-1)	-6.13(13-II-1)
	1081	-45.32(3)	-3.19(13-II-1)	5.75(12-II-1)	0.23(13-II-1)	10.71(12-II-1)	6.38(13-II-1)
47	1092	-134.65(2)	3.21(12-I-1)	-9.01(13-I-1)	0.10(12-II-1)	17.33(13-I-1)	6.67(12-I-1)
	1069	-136.87(2)	3.21(12-I-1)	-9.01(13-I-1)	0.10(12-II-1)	-20.25(13-I-1)	-6.72(12-I-1)
81	1093	-47.78(3)	-4.00(12-II-1)	7.20(13-II-1)	0.30(13-I-1)	-14.33(13-II-1)	-8.87(12-II-1)
	1068	-50.00(3)	-4.00(12-II-1)	7.20(13-II-1)	0.30(13-I-1)	15.68(13-II-1)	7.80(12-II-1)
90	0	-13.53(12-II-1)	2.42(12-I-1)	5.48(13-II-1)	-0.33(12-II-1)	-11.26(13-II-1)	5.11(12-I-1)
	1156	-15.35(3)	2.42(12-I-1)	5.48(13-II-1)	-0.33(12-II-1)	12.21(13-II-1)	-5.23(12-I-1)
91	1156	-16.77(12-I-1)	-1.96(12-II-1)	3.84(13-I-1)	0.19(13-II-1)	-9.08(13-I-1)	-4.33(12-II-1)
	1175	-14.96(12-I-1)	-1.96(12-II-1)	3.84(13-I-1)	0.19(13-II-1)	7.87(13-I-1)	4.32(12-II-1)
92	100	-10.30(12-I-1)	-2.41(12-II-1)	4.12(13-II-1)	0.24(13-II-1)	-8.15(13-II-1)	-5.08(12-II-1)
	1256	-12.05(12-I-1)	-2.41(12-II-1)	4.12(13-II-1)	0.24(13-II-1)	9.47(13-II-1)	5.22(12-II-1)
98	1153	-43.91(3)	3.95(12-I-1)	6.40(13-I-1)	-0.41(13-I-1)	-13.69(13-I-1)	7.74(12-I-1)
	1094	-41.69(3)	3.95(12-I-1)	6.40(13-I-1)	-0.41(13-I-1)	12.99(13-I-1)	-8.72(12-I-1)

Risultati Analisi Dinamica - Sollecitazioni Massime - Muri discretizzati

Muro	Pann.	Sxx	Syy	Sxy	Mxx	Муу	Mxy
		kN/m^2	kN/m^2	kN/m^2	kN	kN	kN
1	1	0	0	0	-0(3)	1(13-II-1)	0(12-I-1)
1	2	0	0	0	-0(3)	1(12-I-1)	-0(12-II-1)
1	3	0	0	0	-0(13-II-1)	1(12-I-1)	-1(12-II-1)
1	4	0	0	0	-0(12-I-1)	2(13-I-1)	-1(12-II-1)
1	5	0	0	0	-0(12-I-1)	2(13-I-1)	-1(13-I-1)
1	6	0	0	0	-0(12-I-1)	2(13-I-1)	-1(13-I-1)
1	7	0	0	0	-0(12-I-1)	2(13-I-1)	-1(13-I-1)
1	8	0	0	0	-0(12-I-1)	1(13-I-1)	-1(13-I-1)
1	9	0	0	0	-3(12-I-1)	-1(13-I-1)	-1(13-I-1)
1	10	0	0	0	-4(13-I-1)	-1(13-I-1)	-1(13-II-1)
1			0	0	-6(12-II-1)	-1(12-II-1)	-1(13-II-1)
1	12	0	0	0	3(12-I-1)	-1(13-II-1)	-1(13-II-1)
1	13 14	0	0	0	-3(12-I-1)	-1(2)	-1(3)
	15		0		-6(12-II-1)	-2(3)	1(12-II-1)
1	16	0	0	0	2(13-I-1) -4(12-I-1)	-1(13-II-1) -1(12-I-1)	0(13-I-1) 0(12-II-1)
1	17	0	0	0	-4(12-II-1)	-1(12-II-1) -1(12-II-1)	-1(12-I-1)
1	18	0	0	0	1(2)	-1(12-II-1) -1(13-II-1)	-1(12-II-1) -1(12-II-1)
1	19	0	0	0	-5(12-I-1)	-1(13-11-1)	-1(13-I-1)
1	20	0	0	0	-4(12-II-1)	-2(3)	0(12-II-1)
1	21	0	0	0	2(2)	-1(13-II-1)	1(13-II-1)
1	22	0	0	0	2(12-II-1)	-1(13-I-1)	2(13-II-1)
1	23	0	0	0	-1(13-I-1)	-0(12-II-1)	1(2)
1	24	0	0	0	-0(13-II-1)	5(13-I-1)	1(2)
1	25	0	0	0	0(13-I-1)	5(2)	1(3)
1	26	0	0	0	-0(13-I-1)	3(3)	1(3)
1	27	0	0	0	-2(2)	-4(13-I-1)	1(12-II-1)
1	28	0	0	0	-2(3)	-4(13-II-1)	-1(12-II-1)
1	29	0	0	0	-0(13-II-1)	3(3)	-1(2)
1	30	0	0	0	0(13-II-1)	5(13-II-1)	-1(2)
1	31	0	0	0	-1(13-I-1)	5(13-II-1)	-1(2)
1	32	0	0	0	-1(13-II-1)	-1(13-II-1)	-0(3)
1	33	0	0	0	1(13-I-1)	-1(13-II-1)	-2(13-I-1)
1	34	0	0	0	2(13-II-1)	-1(13-I-1)	-1(13-I-1)
1	35	0	0	0	-3(3)	-2(3)	-0(13-I-1)
1	36	0	0	0	-4(12-I-1)	-2(2)	1(13-II-1)
1	37	0	0	0	1(13-II-1)	-1(13-I-1)	1(12-II-1)
1	38	0	0	0	-2(12-II-1)	-0(12-II-1)	1(3)
1	39 40	0	0	0	-2(12-I-1)	-0(3)	-1(2)
1	40	0	0	0	1(13-II-1)	-0(2)	1(12-II-1)
1	41	0	0	0	-5(3) -3(12-I-1)	-1(3) -1(2)	1(2) 0(12-II-1)
1	42	0	0	0	1(12-II-1)	-1(2) -1(2)	1(2)
1	44	0	0	0	-2(13-II-1)	-1(13-II-1)	1(2)
1	45	0	0	0	-1(13-II-1)	-1(13-II-1) -1(13-II-1)	1(13-II-1)
1	46	0	0	0	1(13-II-1)	0(13-II-1)	1(13-II-1)
1	47	0	0	0	0(13-II-1)	0(13-II-1)	0(13-II-1)
1	48	0	0	0	0(12-I-1)	1(13-II-1)	1(13-II-1)
1	49	0	0	0	-1(13-II-1)	-1(13-II-1)	1(12-I-1)
1	50	0	0	0	-4(3)	-1(3)	1(12-I-1)
1	51	0	0	0	-2(12-I-1)	3(13-I-1)	1(12-I-1)
1	52	0	0	0	-3(3)	4(13-I-1)	1(12-I-1)
1	53	0	0	0	-3(2)	2(2)	-1(12-II-1)
1	54	0	0	0	-3(2)	3(13-I-1)	-1(12-II-1)
1	55	0	0	0	-2(12-I-1)	2(2)	-1(13-I-1)

Muro	Pann.	Sxx	Syy	Sxy	Mxx	Myy	Mxy
1	56	0	0	0	-3(12-I-1)	3(13-I-1)	-1(2)
1	57	0	0	0	1(3)	3(2)	3(2)
1	58	0	0	0	4(2)	2(2)	2(2)
1	59	0	0	0	3(2)	4(2)	1(2)
1	60	0	0	0	1(12-I-1)	4(2)	2(2)
1	61	0	0	0	1(2)	5(2)	2(3)
1	62	0	0	0	1(12-I-1)	2(13-I-1)	1(2)
1	63	0	0	0	0(13-I-1)	5(2)	2(2)
1	64 65	0	0	0	-5(12-II-1) 1(2)	-2(13-II-1) 5(2)	2(12-I-1) 1(2)
1	66	0	0	0	-1(12-II-1)	4(2)	1(12-I-1)
1	67	0	0	0	-3(12-II-1)	3(13-I-1)	-1(13-II-1)
1	68	0	0	0	-3(12-II-1)	-1(12-II-1)	0(13-I-1)
1	69	0	0	0	3(2)	1(13-I-1)	1(13-I-1)
1	70	0	0	0	2(2)	3(2)	-1(13-II-1)
1	71	0	0	0	-1(13-II-1)	3(2)	-1(12-II-1)
1	72	0	0	0	1(2)	3(2)	-2(3)
1	73	0	0	0	1(2)	4(2)	-1(13-II-1)
1	74	0	0	0	-2(12-I-1)	2(13-I-1)	-2(12-II-1)
1	75	0	0	0	-6(12-II-1)	2(13-I-1)	-1(12-II-1)
1	76 77	0	0	0	3(12-I-1)	2(2)	-1(13-II-1)
1	78	0	0	0	-3(12-II-1) -3(3)	3(2) -2(13-II-1)	-1(13-II-1) 1(12-I-1)
1	79	0	0	0	-1(3)	1(13-I-1)	-1(12-II-1)
1	80	0	0	0	-1(3)	3(3)	1(12-II-1)
1	81	0	0	0	-1(3)	2(2)	-0(12-II-1)
1	82	0	0	0	0(13-I-1)	1(13-II-1)	1(13-II-1)
1	83	0	0	0	-0(13-II-1)	2(13-II-1)	1(12-I-1)
1	84	0	0	0	-1(2)	3(13-II-1)	1(2)
1	85	0	0	0	-1(12-I-1)	-3(13-I-1)	2(13-II-1)
1	86	0	0	0	1(3)	-1(3)	-1(2)
1	87	0	0	0	-1(13-I-1)	4(3)	-1(12-I-1)
1	88 89	0	0	0	1(13-II-1)	4(3)	-2(2)
1	90	0	0	0	0(3) -3(12-II-1)	5(3) 2(13-II-1)	-2(2) -1(12-I-1)
1	91	0	0	0	-6(12-II-1)	-4(3)	-1(12-II-1)
1	92	0	0	0	1(13-II-1)	-1(13-I-1)	-1(12-II-1) -1(12-I-1)
1	93	0	0	0	0(12-I-1)	2(13-II-1)	-1(3)
1	94	0	0	0	1(3)	3(3)	1(3)
1	95	0	0	0	3(3)	2(2)	1(3)
1		0	0	0	-2(12-II-1)	2(13-I-1)	1(2)
1	97	0	0	0	-0(13-II-1)	3(3)	1(3)
1	98	0	0	0	-0(12-I-1)	3(13-II-1)	1(3)
1	99	0	0	0	1(2)	2(13-II-1)	1(2)
1	100	0	0	0	-1(3)	-4(13-I-1)	1(2)
1	101 102	0	0	0	-4(12-I-1) -1(12-I-1)	-2(13-I-1) 2(13-II-1)	2(12-II-1) 2(2)
1	102	0	0	0	-5(12-I-1)	-4(2)	1(13-II-1)
1	103	0	0	0	-1(12-I-1)	3(3)	1(3)
1	105	0	0	0	4(3)	1(12-II-1)	1(3)
1	106	0	0	0	-1(12-I-1)	-3(13-I-1)	1(13-II-1)
1	107	0	0	0	3(2)	4(2)	1(2)
1	108	0	0	0	1(12-II-1)	4(3)	2(2)
1	109	0	0	0	1(12-II-1)	5(13-I-1)	1(13-II-1)
1	110	0	0	0	1(2)	5(2)	1(2)
1	111 112	0	0	0	2(2)	3(13-I-1)	1(3)
1	112	0	0	0	2(2) -9(2)	5(2) -4(13-I-1)	1(3) 0(12-II-1)
1	113	0	0	0	-5(2)	4(2)	3(2)
1	115	0	0	0	-4(2)	5(2)	-1(3)
1	116	0	0	0	-1(12-I-1)	6(2)	-1(12-II-1)
1	117	0	0	0	-1(12-I-1)	5(2)	0(13-I-1)
1	118	0	0	0	-1(2)	7(2)	0(12-I-1)
1	119	0	0	0	-2(12-I-1)	3(13-I-1)	1(12-I-1)
1	120	0	0	0	-1(3)	5(2)	-1(12-II-1)
1	121	0	0	0	-2(2)	7(2)	-1(3)

1 1	Pann.	Sxx	Syy	Sxy	Mxx	Myy	Mxy
1	122	0	0	0	-4(12-II-1)	2(13-I-1)	-1(12-II-1)
1	123	0	0	0	-0(2)	5(2)	-2(2)
1	124	0	0	0	-4(2)	-3(2)	-1(3)
1	125	0	0	0	2(2)	5(2)	-1(3)
1	126	0	0	0	4(2)	1(12-II-1)	-1(3)
1	127	0	0	0	-3(12-II-1)	3(13-I-1)	1(12-I-1)
1	128	0	0	0	1(13-I-1)	5(2)	1(12-I-1)
1	129	0	0	0	-3(12-I-1)	3(13-I-1)	-2(12-II-1)
1	130	0	0	0	0(12-I-1)	5(2)	-0(12-I-1)
1	131	0	0	0	1(12-II-1)	4(2)	-1(2)
1	132	0	0	0	1(2)	2(13-I-1)	-1(2)
1	133	0	0	0	0(12-II-1)	6(2)	-1(2)
1	134	0	0	0	-1(12-I-1)	-3(13-II-1)	-1(13-I-1)
1	135	0	0	0	4(3)	1(12-II-1)	-1(2)
1	136	0	0	0	1(12-II-1)	3(3)	-2(3)
1	137	0	0	0	3(3)	3(3)	-1(2)
1	138	0	0	0	2(3)	4(13-II-1)	-1(2)
1	139	0	0	0	2(3)	2(13-II-1)	-1(13-I-1)
1	140	0	0	0	1(3)	4(13-II-1)	-1(2)
1	141	0	0	0	1(12-II-1)	5(13-II-1)	-2(13-I-1)
1	142	0	0	0	-2(12-I-1)	3(13-II-1)	-1(12-I-1)
1	143	0	0	0	-3(12-I-1)	-2(2)	-1(13-I-1)
1	144	0	0	0	-5(12-II-1)	-2(3)	-1(12-II-1)
1	145	0	0	0	-3(12-II-1)	3(13-II-1)	1(12-II-1)
1	146	0	0	0	-2(2)	5(3)	1(12-II-1)
1	147	0	0	0	-3(2)	5(3)	-1(2)
1	148	0	0	0	-4(3)	5(3)	-0(12-I-1)
1	149	0	0	0	-8(3)	-5(3)	-1(13-I-1)
1	150	0	0	0	4(3)	1(12-II-1)	1(3)
1	151	0	0	0	2(3)	4(3)	1(3)
1	152	0	0	0	-4(3)	-3(3)	1(2)
1	153	0	0	0	-1(2)	4(3)	2(3)
1	154	0	0	0	1(12-I-1)	3(13-II-1)	0(3)
1	155	0	0	0	1(12-II-1)	2(13-II-1)	1(3)
1	156	0	0	0	-0(2)	4(3)	1(3)
1	157	0	0	0	1(3)	1(13-II-1)	1(3)
1	158	0	0	0	-3(12-I-1)	2(13-II-1)	1(12-II-1)
1	159	0	0	0	-1(13-I-1)	4(3)	-1(12-I-1)
1	160	0	0	0	-3(12-II-1)	-3(13-I-1)	-1(12-I-1)

VERIFICHE STATO LIMITE ULTIMO

Verifica dei Muri in calcestruzzo

Scenario di calcolo : Set_NT_SLV_SLD_A2_STR/GEO

Muro [Platea]:1 - Nodi : [1067 - 1064 - 1065 - 1066]: Verificato
Pann=160 Spess.= 40 cm Terreno: santa maria scuola Criterio CLS_Muri Materiale: Rck30

Armatura a maglia doppia

minatura a	magna ac	ppia								
Pannello	Nx	Ny	Nxy	Mx	My	Mxy	Ax	Ay	C	Cs
	kN	kN	kN	kN*m	kN*m	kN*m	m^2	m^2		
1	0.00	0.00	0.00	-0.12	1.50	0.35	0.00	0.00	(12+13)-II-2	39.8
2	0.00	0.00	0.00	-0.08	1.17	0.27	0.00	0.00	(12+13)-I-1	51.2
3	0.00	0.00	0.00	-0.00	0.80	-0.42	0.00	0.00	(12+13)-II-1	60.2

Pannello	Nx	Ny	Nxy	Mx	My	Mxy	Ax	Ay	С	Cs
4	0.00	0.00	0.00	-0.01	1.61	-0.42	0.00	0.00	(12+13)-II-1	36.1
5	0.00	0.00	0.00	-0.04	2.48	-0.64	0.00	0.00	(12+13)-II-1	23.6
6	0.00	0.00	0.00	-0.14	2.30	-0.75	0.00	0.00	(12+13)-II-1	24.1
7	0.00	0.00	0.00	-0.20	2.10	-0.81	0.00	0.00	(12+13)-II-1	25.3
8	0.00	0.00	0.00	-0.05	0.64	-0.71	0.00	0.00	(12+13)-II-1	54.8
9	0.00	0.00	0.00	-2.79	-0.91	-0.96	0.00	0.00	(12+13)-II-1	19.6
10 11	0.00	0.00	0.00	-4.01 -6.42	-1.36 -1.25	0.42 0.14	0.00	0.00	(12+13)-II-1 (12+13)-I-3	16.6
12	0.00	0.00	0.00	2.81	-0.00	-0.00	0.00	0.00	(12+13)-I-3 (12+13)-I-1	26.2
13	0.00	0.00	0.00	-3.06	-1.08	-0.37	0.00	0.00	(12+13)-I-1 (12+13)-I-1	21.4
14	0.00	0.00	0.00	-5.71	-1.62	0.79	0.00	0.00	(12+13)-I-3	11.3
15	0.00	0.00	0.00	1.71	0.53	0.46	0.00	0.00	(12+13)-II-1	34.0
16	0.00	0.00	0.00	-3.75	-0.79	-0.20	0.00	0.00	(12+13)-I-1	18.6
17	0.00	0.00	0.00	-3.59	-0.96	0.46	0.00	0.00	(12+13)-I-3	18.2
18	0.00	0.00	0.00	1.49	-0.05	-0.58	0.00	0.00	2	35.5
19	0.00	0.00	0.00	-4.98	-1.23	-0.38	0.00	0.00	(12+13)-I-1	13.7
20	0.00	0.00	0.00	-4.39	-1.41	0.48	0.00	0.00	(12+13)-I-3	15.1
21	0.00	0.00	0.00	2.17	-0.03	0.78	0.00	0.00	3	24.9
22	0.00	0.00	0.00	1.16	0.44	1.56	0.00	0.00	(12+13)-II-2	27.0
23	0.00	0.00	0.00	-1.12	-0.41	0.50	0.00	0.00	(12+13)-II-1	45.4
24 25	0.00	0.00	0.00	0.16 0.18	5.45	0.45 1.34	0.00	0.00	(12+13)-II-1	12.5 11.0
26	0.00	0.00	0.00	-0.27	3.32	1.34	0.00	0.00	2 3	16.3
27	0.00	0.00	0.00	-1.55	-4.26	0.54	0.00	0.00	(12+13)-II-1	15.3
28	0.00	0.00	0.00	-1.39	-3.81	-0.46	0.00	0.00	(12+13)-II-2	17.2
29	0.00	0.00	0.00	-0.20	2.87	-1.29	0.00	0.00	3	17.7
30	0.00	0.00	0.00	0.17	4.11	-1.33	0.00	0.00	3	13.5
31	0.00	0.00	0.00	0.23	5.20	-0.51	0.00	0.00	(12+13)-II-2	12.9
32	0.00	0.00	0.00	-1.14	-1.08	-0.31	0.00	0.00	(12+13)-II-2	51.0
33	0.00	0.00	0.00	1.31	0.73	-1.65	0.00	0.00	(12+13)-II-1	24.8
34	0.00	0.00	0.00	1.86	0.27	0.79	0.00	0.00	(12+13)-II-2	27.8
35	0.00	0.00	0.00	-3.15	-1.30	-0.14	0.00	0.00	(12+13)-I-3	22.3
36	0.00	0.00	0.00	-3.58	-1.17	0.09	0.00	0.00	(12+13)-I-1	20.0
37	0.00	0.00	0.00	1.22	0.02	0.54	0.00	0.00	(12+13)-II-2	41.9
38 39	0.00	0.00	0.00	-1.67 -1.72	-0.22 -0.21	0.58 -0.55	0.00	0.00	(12+13)-I-1	32.7 32.4
40	0.00	0.00	0.00	-0.48	-0.21	0.62	0.00	0.00	(12+13)-I-1 (12+13)-I-3	66.7
41	0.00	0.00	0.00	-5.01	-0.19	0.62	0.00	0.00	3	13.1
42	0.00	0.00	0.00	-2.58	-0.02	-0.22	0.00	0.00	(12+13)-I-1	26.3
43	0.00	0.00	0.00	0.48	-0.61	1.27	0.00	0.00	2	39.2
44	0.00	0.00	0.00	-2.07	-1.45	0.39	0.00	0.00	(12+13)-II-2	29.9
45	0.00	0.00	0.00	-1.13	-0.73	1.33	0.00	0.00	(12+13)-II-2	29.9
46	0.00	0.00	0.00	0.54	0.46	1.11	0.00	0.00	(12+13)-II-2	44.7
47	0.00	0.00	0.00	0.27	0.50	0.50	0.00	0.00	(12+13)-II-2	74.3
48	0.00	0.00	0.00	0.01	1.37	0.57	0.00	0.00	(12+13)-II-2	37.9
49	0.00	0.00	0.00	-0.94	0.36	0.75	0.00	0.00	(12+13)-I-1	43.7
50	0.00	0.00	0.00	-4.14	-1.28	0.24	0.00	0.00	3	16.8
51	0.00	0.00	0.00	0.11	3.44	-0.61	0.00	0.00	(12+13)-II-1	18.2
52	0.00	0.00	0.00	-1.39	4.11	0.21	0.00	0.00	(12+13)-II-1	17.0
53 54	0.00	0.00	0.00	-2.87 -2.98	2.32 1.19	-0.40 -0.81	0.00	0.00	2 2	22.5 19.4
55	0.00	0.00	0.00	-2.98	1.19	0.02	0.00	0.00	(12+13)-I-1	29.2
56	0.00	0.00	0.00	-2.30	2.65	-0.67	0.00	0.00	(12+13)-II-1 (12+13)-II-1	29.2
57	0.00	0.00	0.00	0.96	3.44	2.66	0.00	0.00	2	12.1
58	0.00	0.00	0.00	3.75	2.36	1.66	0.00	0.00	2	13.6
59	0.00	0.00	0.00	2.72	3.94	1.16	0.00	0.00	2	14.4
60	0.00	0.00	0.00	0.31	4.36	2.01	0.00	0.00	2	11.6
61	0.00	0.00	0.00	1.13	5.24	1.55	0.00	0.00	2	10.8
62	0.00	0.00	0.00	0.88	2.34	1.17	0.00	0.00	2	21.0
63	0.00	0.00	0.00	-0.09	4.69	2.13	0.00	0.00	2	10.8
64	0.00	0.00	0.00	-4.84	-0.75	-0.92	0.00	0.00	(12+13)-I-3	12.8
65	0.00	0.00	0.00	1.43	4.73	1.13	0.00	0.00	2	12.5
66	0.00	0.00	0.00	-0.61	4.10	1.09	0.00	0.00	(12+12) H 1	14.2
67	0.00	0.00	0.00	-1.00	3.26	0.67	0.00	0.00	(12+13)-II-1	18.7
68	0.00	0.00	0.00	-2.71	-0.69	-0.01	0.00	0.00	(12+13)-I-3	27.1
69	0.00	0.00	0.00	3.14	1.32	0.61	0.00	0.00	2	19.6

Pannello	Nx	Ny	Nxy	Mx	My	Mxy	Ax	Ay	С	Cs
70	0.00	0.00	0.00	2.06	3.48	-0.09	0.00	0.00	2	20.6
71	0.00	0.00	0.00	-0.44	3.47	-0.67	0.00	0.00	2	17.8
72	0.00	0.00	0.00	0.72	2.70	-1.56	0.00	0.00	2	17.3
73	0.00	0.00	0.00	1.31	4.28	-0.50	0.00	0.00	2	15.4
74	0.00	0.00	0.00	-2.09	-0.20	0.99	0.00	0.00	(12+13)-I-1	23.9
75	0.00	0.00	0.00	-5.56	0.02	-1.45	0.00	0.00	(12+13)-I-3	10.5
76	0.00	0.00	0.00	2.81	1.57	-0.59	0.00	0.00	(12+13)-I-1	21.7
77 78	0.00	0.00	0.00	-3.00 -3.26	0.93	-0.66 -0.05	0.00	0.00	(12+13)-I-3 3	20.1
79	0.00	0.00	0.00	-0.16	0.86	-0.03	0.00	0.00	(12+13)-II-1	51.2
80	0.00	0.00	0.00	-1.41	2.56	0.36	0.00	0.00	2	25.2
81	0.00	0.00	0.00	-0.63	1.54	-0.24	0.00	0.00	3	41.4
82	0.00	0.00	0.00	-0.01	1.49	1.04	0.00	0.00	(12+13)-II-2	29.1
83	0.00	0.00	0.00	-0.40	2.00	0.47	0.00	0.00	(12+13)-II-2	29.7
84	0.00	0.00	0.00	-0.51	2.67	0.75	0.00	0.00	(12+13)-II-2	21.5
85	0.00	0.00	0.00	-0.63	2.44	1.51	0.00	0.00	(12+13)-II-2	18.6
86	0.00	0.00	0.00	1.08	-0.97	-1.02	0.00	0.00	2	35.1
87	0.00	0.00	0.00	-0.84	3.91	-0.77	0.00	0.00	3	15.7
88	0.00	0.00	0.00	0.59	4.19	-1.67	0.00	0.00	3	12.6
89 90	0.00	0.00	0.00	0.46 -3.32	5.06	-1.94 0.59	0.00	0.00	(12+13)-I-3	10.5 18.8
90	0.00	0.00	0.00	-5.58	-2.67	-1.07	0.00	0.00	(12+13)-I-3	11.1
92	0.00	0.00	0.00	-0.19	-1.23	-0.14	0.00	0.00	(12+13)-II-1	53.9
93	0.00	0.00	0.00	0.07	1.82	-1.23	0.00	0.00	3	24.2
94	0.00	0.00	0.00	1.36	3.29	0.63	0.00	0.00	3	18.8
95	0.00	0.00	0.00	3.13	1.49	0.83	0.00	0.00	3	18.5
96	0.00	0.00	0.00	-0.18	2.01	0.70	0.00	0.00	(12+13)-II-1	27.2
97	0.00	0.00	0.00	-0.25	3.21	1.37	0.00	0.00	3	16.1
98	0.00	0.00	0.00	-0.16	2.94	0.98	0.00	0.00	(12+13)-II-2	18.8
99	0.00	0.00	0.00	0.15	1.91	0.52	0.00	0.00	(12+13)-II-2	30.3
100	0.00	0.00	0.00	-0.74	-3.76	1.21	0.00	0.00	(12+13)-II-1	14.8
101	0.00	0.00	0.00	-3.27 -0.04	-0.54 1.66	1.15 1.23	0.00	0.00	(12+13)-II-2	16.6 25.5
102	0.00	0.00	0.00	-5.28	-2.88	0.59	0.00	0.00	(12+13)-II-2 (12+13)-I-1	12.5
103	0.00	0.00	0.00	-0.41	3.02	1.24	0.00	0.00	3	17.3
105	0.00	0.00	0.00	4.15	0.81	0.68	0.00	0.00	3	15.2
106	0.00	0.00	0.00	-0.48	-2.90	-0.12	0.00	0.00	(12+13)-II-1	24.3
107	0.00	0.00	0.00	2.93	3.92	1.21	0.00	0.00	2	14.3
108	0.00	0.00	0.00	0.86	3.73	1.85	0.00	0.00	3	13.2
109	0.00	0.00	0.00	0.92	4.79	-0.49	0.00	0.00	(12+13)-II-1	14.0
110	0.00	0.00	0.00	1.27	4.97	1.33	0.00	0.00	2	11.7
111	0.00	0.00	0.00	1.96	2.14	1.31	0.00	0.00	2	21.3
112 113	-0.00	0.00	-0.00	1.88 -8.62	4.72 -3.88	1.32 0.06	0.00	0.00	2 2	12.2 8.48
113	0.00	0.00	0.00	-8.02 -4.71	3.64	2.65	0.00	0.00	2	10.00
115	0.00	0.00	0.00	-4.10	5.48	-0.84	0.00	0.00	2	11.6
116	0.00	0.00	0.00	-1.36	5.82	-0.22	0.00	0.00	2	12.2
117	0.00	0.00	0.00	-0.26	5.48	0.15	0.00	0.00	2	13.1
118	0.00	0.00	0.00	-1.34	6.83	0.35	0.00	0.00	2	10.2
119	0.00	0.00	0.00	-2.48	0.87	1.30	0.00	0.00	(12+13)-I-1	19.5
120	0.00	0.00	0.00	-1.09	5.25	-0.05	0.00	0.00	2	13.9
121	0.00	0.00	0.00	-1.52	6.57	-0.70	0.00	0.00	(12+12) 1.2	10.1
122	0.00	0.00	0.00	-3.65	-0.11	-1.07	0.00	0.00	(12+13)-I-3	15.6
123 124	0.00	0.00	0.00	-0.46 -3.72	5.19	-2.45 -1.30	0.00	0.00	2	9.63
124	0.00	0.00	0.00	2.42	4.63	-0.96	0.00	0.00	3 2	14.7
125	0.00	0.00	0.00	4.47	0.79	-0.72	0.00	0.00	3	14.2
127	0.00	0.00	0.00	-3.05	0.77	-0.72	0.00	0.00	(12+13)-I-3	20.9
128	0.00	0.00	0.00	0.35	5.18	0.18	0.00	0.00	2	13.7
129	0.00	0.00	0.00	-0.39	3.00	-0.77	0.00	0.00	(12+13)-II-1	19.5
130	0.00	0.00	0.00	0.25	4.55	-0.38	0.00	0.00	2	14.9
131	0.00	0.00	0.00	0.50	3.72	-1.28	0.00	0.00	2	14.7
132	0.00	0.00	0.00	1.12	2.24	-0.53	0.00	0.00	2	26.6
133	0.00	0.00	0.00	-0.00	5.73	-1.38	0.00	0.00	2	10.4
134	0.00	0.00	0.00	-0.14	-1.72	-1.27	0.00	0.00	3	24.6
135	0.00	0.00	0.00	4.07	0.75	-0.80	0.00	0.00	3	15.1

Pannello	Nx	Ny	Nxy	Mx	My	Mxy	Ax	Ay	С	Cs
136	0.00	0.00	0.00	0.89	3.18	-1.85	0.00	0.00	3	14.6
137	0.00	0.00	0.00	2.75	3.26	-1.23	0.00	0.00	3	16.4
138	0.00	0.00	0.00	1.74	3.28	-1.36	0.00	0.00	3	15.9
139	0.00	0.00	0.00	0.55	-1.76	-1.39	0.00	0.00	(12+13)-II-1	23.3
140	0.00	0.00	0.00	1.23	3.67	-1.29	0.00	0.00	3	14.8
141	0.00	0.00	0.00	0.91	4.52	0.79	0.00	0.00	(12+13)-II-2	13.9
142	0.00	0.00	0.00	-0.46	2.95	0.19	0.00	0.00	(12+13)-II-2	23.4
143	0.00	0.00	0.00	-3.22	-1.48	0.16	0.00	0.00	(12+13)-I-1	21.7
144	0.00	0.00	0.00	-4.66	-1.80	-0.77	0.00	0.00	(12+13)-I-3	13.5
145	0.00	0.00	0.00	-2.72	0.58	0.95	0.00	0.00	(12+13)-I-3	20.1
146	0.00	0.00	0.00	-1.77	5.37	0.45	0.00	0.00	3	12.6
147	0.00	0.00	0.00	-2.61	5.44	-1.05	0.00	0.00	3	11.4
148	0.00	0.00	0.00	-3.92	4.86	-0.04	0.00	0.00	3	15.0
149	-0.00	-0.00	0.00	-8.49	-4.51	-0.51	0.00	0.00	2	8.18
150	0.00	0.00	0.00	4.29	0.69	0.80	0.00	0.00	3	14.4
151	0.00	0.00	0.00	2.00	3.79	1.00	0.00	0.00	3	15.4
152	0.00	0.00	0.00	-4.24	-3.03	1.39	0.00	0.00	2	13.1
153	0.00	0.00	0.00	-1.27	4.37	2.28	0.00	0.00	3	11.1
154	0.00	0.00	0.00	0.27	2.71	0.23	0.00	0.00	(12+13)-II-2	25.0
155	0.00	0.00	0.00	0.53	2.49	0.85	0.00	0.00	(12+13)-II-2	22.1
156	0.00	0.00	0.00	-0.29	3.99	1.11	0.00	0.00	3	14.4
157	0.00	0.00	0.00	0.91	1.34	0.36	0.00	0.00	(12+13)-II-2	43.4
158	0.00	0.00	0.00	-0.49	2.34	0.93	0.00	0.00	(12+13)-II-2	22.5
159	0.00	0.00	0.00	-0.15	3.64	-0.15	0.00	0.00	3	19.4
160	0.00	0.00	0.00	-2.01	-2.73	-0.65	0.00	0.00	(12+13)-II-1	21.8
Massir	ni/minimi						0.00	0.00		8.18

Verifica SLU delle aste in Legno secondo NTC 2008

Scenario di calcolo : Set_NT_SLV_SLD_A2_STR/GEO

Asta: 1 [1052 , 1071]

Sez. R: b = 0.16m h = 0.32m L = 3.92mCrit.Prog: Legno Pressofl Verifica: Verificata

Instabilità di colonna: Instabilità nel piano XY Instabilità di trave: Trascurabile

X	Nd	Myd	Mzd	σc0d	σmyd	σmzd	fc0d	fmyd	fmzd	Kmod	Comb.	SF
m	kN	kN*m	kN*m	DaN/cm	DaN/cm	DaN/cm	DaN/cm	DaN/cm	DaN/cm			
m	KIN	KIN"III	KIN"III	q	q	q	q	q	q			
0.00	-14.16	15.45	0.82	-2.765	56.563	5.976	165.517	176.256	182.069	1	(12+13)- II-2	2.64

Verifica a taglio (§4.4.8.1.9 - NTC 2008)

X	Tyd	Tzd	τd	fvd	Kmod	Comb.	SF
m	kN	kN	DaN/cmq	DaN/cmq			
0.00	0.50	7.01	2.057	18.621	1	(12+13)-II-2	9.05

Asta: 1 [100, 200]

Sez. R: b = 0.16m h = 0.32m L = 0.60mCrit.Prog: Legno_Arcareccio Verifica: Verificata

Verifica a flessione (§4.4.8.1.6, §4.4.8.1.1 - NTC 2008)

Parametri di verifica: km = 0.70 kh,y = 1.06 kh,z = 1.10 kcrit,m = 1.00 Leff = 0.54m

Instabilità di trave: Trascurabile

X	Myd	Mzd	σmyd	σmzd	fmyd	fmzd	Kmod	Comb.	SF
m	kN*m	kN*m	DaN/cmq	DaN/cmq	DaN/cmq	DaN/cmq			
0.00	0.77	0.00	2.806	0.000	105.753	109.241	0.6	1	37.68

Verifica a taglio (§4.4.8.1.9 - NTC 2008)

X	Tyd	Tzd	τd	fvd	Kmod	Comb.	SF
m	kN	kN	DaN/cmq	DaN/cmq			
0.00	0.00	1.42	0.417	11.172	0.6	1	26.79

Asta: 2 [1053 , 1072]

Sez. R: b = 0.16m h = 0.32m L = 3.92mCrit.Prog: Legno Arcareccio Verifica: Verificata

Verifica a flessione (§4.4.8.1.6, §4.4.8.1.1 - NTC 2008)

Parametri di verifica: km = 0.70 kh,y = 1.06 kh,z = 1.10 kcrit,m = 1.00 Leff = 3.53m

Instabilità di trave: Trascurabile

X	Myd	Mzd	σmyd	σmzd	fmyd	fmzd	Kmod	Comb.	SF
m	kN*m	kN*m	DaN/cmq	DaN/cmq	DaN/cmq	DaN/cmq			
0.00	12.42	0.00	45.501	0.000	176.256	182.069	1	(12+13)-II- 2	3.87

Verifica a taglio (\$4.4.8.1.9 - NTC 2008)

verijica a iagi	110 (§7.7.0.1.) - 1	<u>VI C 2000)</u>					
X	Tyd	Tzd	τd	fvd	Kmod	Comb.	SF
m	kN	kN	DaN/cmq	DaN/cmq			
0.00	0.10	5.54	1.624	18.621	1	(12+13)-II-2	11.46

Asta: 2 [1175, 1275]

Sez. R: b = 0.16m h = 0.32m L = 0.60m $Crit.Prog: Legno_Arcareccio$ Verifica: Verificata

Verifica a flessione (§4.4.8.1.6, §4.4.8.1.1 - NTC 2008)

Parametri di verifica: km = 0.70 kh,y = 1.06 kh,z = 1.10 kcrit,m = 1.00 Leff = 0.54m

Instabilità di trave: Trascurabile

X	Myd	Mzd	σmyd	σmzd	fmyd	fmzd	Kmod	Comb.	SF
m	kN*m	kN*m	DaN/cmq	DaN/cmq	DaN/cmq	DaN/cmq			
0.00	1.34	0.00	4.900	0.000	105.753	109.241	0.6	1	21.58

Verifica a taglio (§4.4.8.1.9 - NTC 2008)

r crijied di tagi	0 (3 1.1.0.1.) 1	<u> </u>					
X	Tyd	Tzd	τd	fvd	Kmod	Comb.	SF
m	kN	kN	DaN/cmq	DaN/cmq			
0.00	0.02	2.41	0.706	11.172	0.6	1	15.83

Asta: 3 [1054, 1073]

Sez. R: b = 0.16m h = 0.32m L = 3.92mCrit.Prog: Legno Pressofl Verifica: Verificata

Verifica a pressoflessione (§4.4.8.1.8 - NTC 2008, §6.5.2.3 - CNR DT 206/2007)

Parametri di verifica: km = 0.70 kh,y = 1.06 kh,z = 1.10 kcrit,c = 0.48 kcrit,m = 1.00 Lo = 3.92m Leff = 3.53m

Instabilità di colonna: Instabilità nel piano XY Instabilità di trave: Trascurabile

X	Nd	Myd	Mzd	σc0d	σmyd	σmzd	fc0d	fmyd	fmzd	Kmod	Comb.	SF
m	kN	kN*m	kN*m	DaN/cm	DaN/cm	DaN/cm	DaN/cm	DaN/cm	DaN/cm			
111	KIN	KIN III	KIN III	q	q	a	a	a	a			
						- 1		-				

x	Tyd	Tzd	τd	fvd	Kmod	Comb.	SF
m	kN	kN	DaN/cmq	DaN/cmq			
0.00	0.40	5.75	1.689	18.621	1	(12+13)-I-3	11.03

Asta: 3 [1275, 1375]

Sez. R: b = 0.12m h = 0.16m L = 0.60mCrit.Prog: Legno_Arcareccio Verifica: Verificata

Verifica a flessione (§4.4.8.1.6, §4.4.8.1.1 - NTC 2008)

Parametri di verifica: km = 0.70 kh,y = 1.10 kh,z = 1.10 kcrit,m = 1.00 leff = 0.54m

Instabilità di trave: Trascurabile

X	Myd	Mzd	σmyd	σmzd	fmyd	fmzd	Kmod	Comb.	SF
m	kN*m	kN*m	DaN/cmq	DaN/cmq	DaN/cmq	DaN/cmq			
0.00	0.11	0.00	2.154	0.000	109.241	109.241	0.6	1	50.73

Verifica a taglio (§4.4.8.1.9 - NTC 2008)

X	Tyd	Tzd	τd	fvd	Kmod	Comb.	SF
m	kN	kN	DaN/cmq	DaN/cmq			
0.00	1.31	0.23	1.040	18.621	1	(12+13)-I-3	17.90

Asta: 4 [1055, 1074]

Sez. R: b = 0.16m h = 0.32m L = 4.42mCrit.Prog: Legno_Pressofl Verifica: Verificata

Verifica a pressoflessione (§4.4.8.1.8 - NTC 2008, §6.5.2.3 - CNR DT 206/2007)

Parametri di verifica: km = 0.70 kh,y = 1.06 kh,z = 1.10 kcrit,c = 0.39 kcrit,m = 1.00 Lo = 4.42m Leff = 2.08...

3.98m

Instabilità di colonna: Instabilità nel piano XY Instabilità di trave: Trascurabile

X	Nd	Myd	Mzd	σc0d	σmyd	σmzd	fc0d	fmyd	fmzd	Kmod	Comb.	SF
m	kN	kN*m	kN*m	DaN/cm q	DaN/cm q	DaN/cm q	DaN/cm q	DaN/cm q	DaN/cm q			
0.00	-14.22	12.88	0.11	-2.778	47.175	0.825	165.517	176.256	182.069	1	(12+13)- II-1	3.18

Verifica a taglio (§4.4.8.1.9 - NTC 2008)

t et tjre er er terg	10 (3 ////0121) 1	11 0 20007					
X	Tyd	Tzd	τd	fvd	Kmod	Comb.	SF
m	kN	kN	DaN/cmq	DaN/cmq			
0.00	0.03	5.35	1.567	18.621	1	(12+13)-II-1	11.89

Asta: 4 [1375, 1275]

Sez. R: b = 0.12m h = 0.16m L = 1.00mCrit.Prog: Legno_Arcareccio Verifica: Verificata

Verifica a flessione (§4.4.8.1.6, §4.4.8.1.1 - NTC 2008)

Parametri di verifica: km = 0.70 kh,y = 1.10 kh,z = 1.10 kcrit,m = 1.00 Leff = 0.90m

X	Myd	Mzd	σmyd	σmzd	fmyd	fmzd	Kmod	Comb.	SF
m	kN*m	kN*m	DaN/cmq	DaN/cmq	DaN/cmq	DaN/cmq			
1.00	0.36	0.00	6.948	0.000	109.241	109.241	0.6	1	15.72

x	Tyd	Tzd	τd	fvd	Kmod	Comb.	SF
m	kN	kN	DaN/cmq	DaN/cmq			
1.00	0.01	0.83	0.646	11.172	0.6	1	17.29

Asta: 5 [1056, 1075]

Sez. R: b = 0.16m h = 0.32m L = 4.42mCrit.Prog: Legno_Pressofl Verifica: Verificata

Verifica a pressoflessione (§4.4.8.1.8 - NTC 2008, §6.5.2.3 - CNR DT 206/2007)

Parametri di verifica: km = 0.70 kh,y = 1.06 kh,z = 1.10 kcrit,c = 0.39 kcrit,m = 1.00 Lo = 4.42m Leff = 3.98m

Instabilità di colonna: **Instabilità nel piano XY** Instabilità di trave: **Trascurabile**

X	Nd	Myd	Mzd	σc0d	σmyd	σmzd	fc0d	fmyd	fmzd	Kmod	Comb.	SF
m	kN	kN*m	kN*m	DaN/cm	DaN/cm	DaN/cm	DaN/cm	DaN/cm	DaN/cm			
111	KIT	KIN III	KIN III	q	q	q	q	q	q			
0.00	-17.72	15.40	0.58	-3.461	56.405	4.271	165.517	176.256	182.069	1	(12+13)- I-3	2.56

Verifica a taglio (§4.4.8.1.9 - NTC 2008)

X	Tyd	Tzd	τd	fvd	Kmod	Comb.	SF
m	kN	kN	DaN/cmq	DaN/cmq			
0.00	0.15	7.13	2.088	18.621	1	(12+13)-I-1	8.92

Asta: 5 [1275, 200]

Sez. R: b = 0.12m h = 0.16m L = 2.50mCrit.Prog: Legno Arcareccio Verifica: Verificata

Verifica a flessione (§4.4.8.1.6, §4.4.8.1.1 - NTC 2008)

Parametri di verifica: km = 0.70 kh,y = 1.10 kh,z = 1.10 kcrit,m = 1.00 Leff = 2.25m

Instabilità di trave: Trascurabile

X	Myd	Mzd	σmyd	σmzd	fmyd	fmzd	Kmod	Comb.	SF
m	kN*m	kN*m	DaN/cmq	DaN/cmq	DaN/cmq	DaN/cmq			
0.00	0.51	0.00	9.973	0.000	109.241	109.241	0.6	1	10.95

Verifica a taglio (§4.4.8.1.9 - NTC 2008)

X	Tyd	Tzd	τd	fvd	Kmod	Comb.	SF
m	kN	kN	DaN/cmq	DaN/cmq			
0.00	0.00	1.26	0.984	11.172	0.6	1	11.35

Asta: 6 [1057, 1076]

Sez. R: b = 0.16m h = 0.32m L = 4.42mCrit.Prog: Legno_Pressofl Verifica: Verificata

Verifica a pressoflessione (§4.4.8.1.8 - NTC 2008, §6.5.2.3 - CNR DT 206/2007)

Parametri di verifica: km = 0.70 kh,y = 1.06 kh,z = 1.10 kcrit,c = 0.39 kcrit,m = 1.00 Lo = 4.42m Leff = 3.98m

Instabilità di colonna: **Instabilità nel piano XY** Instabilità di trave: **Trascurabile**

X	Nd	Myd	Mzd	σc0d	σmyd	σmzd	fc0d	fmyd	fmzd	Kmod	Comb.	SF
m	kN	kN*m	kN*m	DaN/cm q	DaN/cm q	DaN/cm q	DaN/cm q	DaN/cm q	DaN/cm q			
0.00	-19.52	15.71	0.63	-3.813	57.540	4.641	165.517	176.256	182.069	1	(12+13)- I-1	2.48

Verifica a taglio (§4.4.8.1.9 - NTC 2008)

X	Tyd	Tzd	τd	fvd	Kmod	Comb.	SF

X	Tyd	Tzd	τd	fvd	Kmod	Comb.	SF
m	kN	kN	DaN/cmq	DaN/cmq			
0.00	0.23	6.90	2.023	18.621	1	(12+13)-I-3	9.21

Asta: 7 [1071, 1077]

Sez. R: b = 0.16m h = 0.32m L = 1.43mCrit.Prog: Legno_Arcareccio Verifica: Verificata

Verifica a flessione (§4.4.8.1.6, §4.4.8.1.1 - NTC 2008)

Parametri di verifica: km = 0.70 kh,y = 1.06 kh,z = 1.10 kcrit,m = 1.00 Leff = 1.28m

Instabilità di trave: Trascurabile

X	Myd	Mzd	σmyd	σmzd	fmyd	fmzd	Kmod	Comb.	SF
m	kN*m	kN*m	DaN/cmq	DaN/cmq	DaN/cmq	DaN/cmq			
1.43	6.67	0.00	24.412	0.000	105.753	109.241	0.6	1	4.33

Verifica a taglio (§4.4.8.1.9 - NTC 2008)

- recipied di talgi	10 (3) ////0121/ 1	110 2000)					
X	Tyd	Tzd	τd	fvd	Kmod	Comb.	SF
m	kN	kN	DaN/cmq	DaN/cmq			
0.00	0.04	5.61	1.643	11.172	0.6	1	6.80

Asta: 8 [1073 , 1080]

Sez. R: b = 0.16m h = 0.32m L = 1.42mCrit.Prog: Legno Arcareccio Verifica: Verificata

Verifica a flessione (§4.4.8.1.6, §4.4.8.1.1 - NTC 2008)

Parametri di verifica: km = 0.70 kh,y = 1.06 kh,z = 1.10 kcrit,m = 1.00 Leff = 1.28m

Instabilità di trave: Trascurabile

X	Myd	Mzd	σmyd	σmzd	fmyd	fmzd	Kmod	Comb.	SF
m	kN*m	kN*m	DaN/cmq	DaN/cmq	DaN/cmq	DaN/cmq			
0.00	8.12	0.00	29.729	0.000	176.256	182.069	1	(12+13)-I-3	5.93

Verifica a taglio (§4.4.8.1.9 - NTC 2008)

X	Tyd	Tzd	τd	fvd	Kmod	Comb.	SF
m	kN	kN	DaN/cmq	DaN/cmq			
0.00	0.09	6.39	1.871	11.172	0.6	1	5.97

Asta: 9 [1075, 1083]

Sez. R: b = 0.16m h = 0.32m L = 1.43mCrit.Prog: Legno_Arcareccio Verifica: Verificata

Verifica a flessione (§4.4.8.1.6, §4.4.8.1.1 - NTC 2008)

Parametri di verifica: km = 0.70 kh,y = 1.06 kh,z = 1.10 kcrit,m = 1.00 Leff = 1.28m

Instabilità di trave: **Trascurabile**

X	Myd	Mzd	σmyd	σmzd	fmyd	fmzd	Kmod	Comb.	SF
m	kN*m	kN*m	DaN/cmq	DaN/cmq	DaN/cmq	DaN/cmq			
1.43	5.96	0.00	21.831	0.000	105,753	109.241	0.6	1	4.84

Verifica a taglio (§4.4.8.1.9 - NTC 2008)

X	Tyd	Tzd	τd	fvd	Kmod	Comb.	SF
m	kN	kN	DaN/cmq	DaN/cmq			
0.00	0.04	7.34	2.150	11.172	0.6	1	5.20

39

Asta: 10 [1073 , 1092]

Sez. R: b = 0.16m h = 0.32m L = 4.46mCrit.Prog: Legno Arcareccio Verifica: Verificata *Verifica a flessione (§4.4.8.1.6, §4.4.8.1.1 - NTC 2008)*

Parametri di verifica: km = 0.70

kh, y = 1.06

kh, z = 1.10

kcrit, m = 1.00

Leff = 4.01m

Instabilità di trave: Trascurabile

X	Myd	Mzd	σmyd	σmzd	fmyd	fmzd	Kmod	Comb.	SF
m	kN*m	kN*m	DaN/cmq	DaN/cmq	DaN/cmq	DaN/cmq			
4.46	9.20	0.00	33.681	0.000	105.753	109.241	0.6	1	3.14

Verifica a taglio (§4.4.8.1.9 - NTC 2008)

X	Tyd	Tzd	τd	fvd	Kmod	Comb.	SF
m	kN	kN	DaN/cmq	DaN/cmq			
4.46	0.01	10.64	3.118	11.172	0.6	1	3.58

Asta: 11 [1077, 1078]

Sez. R: b = 0.16m h = 0.32m

L = 1.43m

Crit.Prog: Legno Arcareccio Verifica: Verificata

Verifica a flessione (§4.4.8.1.6, §4.4.8.1.1 - NTC 2008)

Parametri di verifica: km = 0.70

kh, y = 1.06 kh, z = 1.10

kcrit, m = 1.00

kcrit, m = 1.00

Leff = 1.28m

Instabilità di trave: Trascurabile Myd Mzd σmzd fmyd fmzd Kmod Comb. SF σ myd DaN/cmq kN*m kN*m DaN/cmq DaN/cmq DaN/cmq m 105.753 0.6 4.20 0.00 6.87 0.00 25.158 0.000109.241

Verifica a taglio (§4.4.8.1.9 - NTC 2008)

X	Tyd	Tzd	τd	fvd	Kmod	Comb.	SF
m	kN	kN	DaN/cmq	DaN/cmq			
1.43	0.03	9.82	2.878	11.172	0.6	1	3.88

<u> Asta: 12 [1078 , </u>1079]

Sez. R: b = 0.16m h = 0.3

 $\frac{1}{h} = 0.32m$ L = 1.43m

Crit.Prog: Legno_Arcareccio Verifica: Verificata

Verifica a flessione (§4.4.8.1.6, §4.4.8.1.1 - NTC 2008)

Parametri di verifica: km = 0.70

kh, y = 1.06

kh, z = 1.10

Leff = 1.28m

Instabilità di trave: Trascurabile

X	Myd	Mzd	σmyd	σmzd	fmyd	fmzd	Kmod	Comb.	SF
m	kN*m	kN*m	DaN/cmq	DaN/cmq	DaN/cmq	DaN/cmq			
0.00	5.99	0.00	21.922	0.000	105.753	109.241	0.6	1	4.82

Verifica a taglio (§4.4.8.1.9 - NTC 2008)

X	Tyd	Tzd	τd	fvd	Kmod	Comb.	SF
m	kN	kN	DaN/cmq	DaN/cmq			
0.00	0.11	7.79	2.281	11.172	0.6	1	4.90

Asta: 13 [1080 , 1081]

Sez. R: b = 0.16m $\bar{h} = 0.32m$ L = 1.43m

Crit.Prog: Legno Arcareccio Verifica: Verificata

Verifica a flessione (§4.4.8.1.6, §4.4.8.1.1 - NTC 2008)

Parametri di verifica: km = 0.70 kh,y = 1.06 kh,z = 1.10 kcrit,m = 1.00 Leff = 1.28m

Instabilità di trave: Trascurabile

Myd Mzd fmyd fmzd Kmod Comb. SF σ myd σmzd kN*m kN*m DaN/cmq DaN/cmq DaN/cmq DaN/cmq m 1.43 5.96 0.0021.841 0.000105.753 109.241 0.6 4.84

x	Tyd	Tzd	τd	fvd	Kmod	Comb.	SF
m	kN	kN	DaN/cmq	DaN/cmq			
1.43	0.10	7.89	2.312	11.172	0.6	1	4.83

Asta: 14 [1081 , 1082]

Sez. R: b = 0.16m h = 0.32m L = 1.42mCrit.Prog: Legno_Arcareccio Verifica: Verificata

Verifica a flessione (§4.4.8.1.6, §4.4.8.1.1 - NTC 2008)

Parametri di verifica: km = 0.70 kh,y = 1.06 kh,z = 1.10 kcrit,m = 1.00 Leff = 1.28m

Instabilità di trave: Trascurabile

X	Myd	Mzd	σmyd	σmzd	fmyd	fmzd	Kmod	Comb.	SF
m	kN*m	kN*m	DaN/cmq	DaN/cmq	DaN/cmq	DaN/cmq			
1.42	6.97	0.00	25.539	0.000	105.753	109.241	0.6	1	4.14

Verifica a taglio (§4.4.8.1.9 - NTC 2008)

x	Tyd	Tzd	τd	fvd	Kmod	Comb.	SF
m	kN	kN	DaN/cmq	DaN/cmq			
0.00	0.06	9.79	2.867	11.172	0.6	1	3.90

Asta: 15 [1082 , 1072]

Sez. R: b = 0.16m h = 0.32m L = 1.43mCrit.Prog: Legno_Arcareccio Verifica: Verificata

Verifica a flessione (§4.4.8.1.6, §4.4.8.1.1 - NTC 2008)

Parametri di verifica: km = 0.70 kh,y = 1.06 kh,z = 1.10 kcrit,m = 1.00 Leff = 1.28m

Instabilità di trave: Trascurabile

110000000000000000000000000000000000000										
X	Myd	Mzd	σmyd	σmzd	fmyd	fmzd	Kmod	Comb.	SF	
m	kN*m	kN*m	DaN/cmq	DaN/cmq	DaN/cmq	DaN/cmq				
0.00	6.91	0.00	25.311	0.000	105.753	109.241	0.6	1	4.18	

Verifica a taglio (§4.4.8.1.9 - NTC 2008)

X	Tyd	Tzd	τd	fvd	Kmod	Comb.	SF
m	kN	kN	DaN/cmq	DaN/cmq			
1.43	0.07	5.79	1.695	11.172	0.6	1	6.59

Asta: 16 [1083 , 1084]

Sez. R: b = 0.16m h = 0.32m L = 1.42mCrit.Prog: Legno Arcareccio Verifica: Verificata

Verifica a flessione (§4.4.8.1.6, §4.4.8.1.1 - NTC 2008)

Parametri di verifica: km = 0.70 kh,y = 1.06 kh,z = 1.10 kcrit,m = 1.00 Leff = 1.28m

Instabilità di trave: Trascurabile

X	Myd	Mzd	σmyd	σmzd	fmyd	fmzd	Kmod	Comb.	SF
m	kN*m	kN*m	DaN/cmq	DaN/cmq	DaN/cmq	DaN/cmq			
1.42	10.85	0.00	39.735	0.000	176.256	182.069	1	(12+13)-I-3	4.44

Verifica a taglio (§4.4.8.1.9 - NTC 2008)

X	Tyd	Tzd	τd	fvd	Kmod	Comb.	SF
m	kN	kN	DaN/cmq	DaN/cmq			
1.42	0.08	8.67	2.539	11.172	0.6	1	4.40

Asta: 17 [1084 , 1085]

Sez. R: b = 0.16m h = 0.32m L = 1.43mCrit.Prog: Legno_Arcareccio Verifica: Verificata

Verifica a flessione (§4.4.8.1.6, §4.4.8.1.1 - NTC 2008)

Parametri di verifica: km = 0.70 kh,y = 1.06 kh,z = 1.10 kcrit,m = 1.00 Leff = 1.28m

Instabilità di trave: Trascurabile

X	Myd	Mzd	σmyd	σmzd	fmyd	fmzd	Kmod	Comb.	SF
m	kN*m	kN*m	DaN/cmq	DaN/cmq	DaN/cmq	DaN/cmq			
0.00	10.65	0.00	39.003	0.000	176.256	182.069	1	(12+13)-I-1	4.52

Verifica a taglio (§4.4.8.1.9 - NTC 2008)

X	Tyd	Tzd	τd	fvd	Kmod	Comb.	SF
m	kN	kN	DaN/cmq	DaN/cmq			
0.00	0.13	7.77	2.277	11.172	0.6	1	4.91

Asta: 18 [1085, 1076]

Sez. R: b = 0.16m h = 0.32m L = 1.42mCrit.Prog: Legno Arcareccio Verifica: Verificata

Verifica a flessione (§4.4.8.1.6, §4.4.8.1.1 - NTC 2008)

Parametri di verifica: km = 0.70 kh,y = 1.06 kh,z = 1.10 kcrit,m = 1.00 Leff = 1.28m

Instabilità di trave: Trascurabile

X	Myd	Mzd	σmyd	σmzd	fmyd	fmzd	Kmod	Comb.	SF
m	kN*m	kN*m	DaN/cmq	DaN/cmq	DaN/cmq	DaN/cmq			
1.42	9.90	0.00	36.237	0.000	176.256	182.069	1	(12+13)-I-3	4.86

Verifica a taglio (§4.4.8.1.9 - NTC 2008)

recipied a tag	10 (3 11 110121) 1	110 2000)					
X	Tyd	Tzd	τd	fvd	Kmod	Comb.	SF
m	kN	kN	DaN/cmq	DaN/cmq			
1.42	0.05	6.73	1.971	11.172	0.6	1	5.67

Asta: 19 [1086 , 1087]

Sez. R: b = 0.16m h = 0.32m L = 1.43mCrit.Prog: Legno_Arcareccio Verifica: Verificata

Verifica a flessione (§4.4.8.1.6, §4.4.8.1.1 - NTC 2008)

Parametri di verifica: km = 0.70 kh,y = 1.06 kh,z = 1.10 kcrit,m = 1.00 Leff = 1.28m

Instabilità di trave: Trascurabile

X	Myd	Mzd	σmyd	σmzd	fmyd	fmzd	Kmod	Comb.	SF
m	kN*m	kN*m	DaN/cmq	DaN/cmq	DaN/cmq	DaN/cmq			
1.43	11.46	0.00	41.985	0.000	176.256	182.069	1	(12+13)-I-3	4.20

Verifica a taglio (§4.4.8.1.9 - NTC 2008)

X	Tyd	Tzd	τd	fvd	Kmod	Comb.	SF
m	kN	kN	DaN/cmq	DaN/cmq			
1.43	0.14	7.91	2.318	11.172	0.6	1	4.82

Asta: 20 [1087 , 1088]

Sez. R: b = 0.16m h = 0.32m L = 1.43mCrit.Prog: Legno Arcareccio Verifica: Verificata

Verifica a flessione (§4.4.8.1.6, §4.4.8.1.1 - NTC 2008)

Parametri di verifica: km = 0.70 kh,y = 1.06 kh,z = 1.10 kcrit,m = 1.00 Leff = 1.28m

x	Mvd	Mzd	σmvd	σmzd	fmvd	fmzd	Kmod	Comb.	SF
m	kN*m	kN*m	DaN/cmq	DaN/cmq	DaN/cmq	DaN/cmq			

X	Myd	Mzd	σmyd	σmzd	fmyd	fmzd	Kmod	Comb.	SF
1.43	7.00	0.00	25.639	0.000	105.753	109.241	0.6	1	4.12

X	Tyd	Tzd	τd	fvd	Kmod	Comb.	SF
m	kN	kN	DaN/cmq	DaN/cmq			
0.00	0.08	9.94	2.912	11.172	0.6	1	3.84

Asta: 21 [1088 , 1074]

Sez. R: b = 0.16m h = 0.32m L = 1.43mCrit.Prog: Legno_Arcareccio Verifica: Verificata

Verifica a flessione (§4.4.8.1.6, §4.4.8.1.1 - NTC 2008)

Parametri di verifica: km = 0.70 kh,y = 1.06 kh,z = 1.10 kcrit,m = 1.00 Leff = 1.28m

Instabilità di trave: Trascurabile

X	Myd	Mzd	σmyd	σmzd	fmyd	fmzd	Kmod	Comb.	SF
m	kN*m	kN*m	DaN/cmq	DaN/cmq	DaN/cmq	DaN/cmq			
0.00	6.80	0.00	24.905	0.000	105.753	109.241	0.6	1	4.25

Verifica a taglio (§4.4.8.1.9 - NTC 2008)

X	Tyd	Tzd	τd	fvd	Kmod	Comb.	SF
m	kN	kN	DaN/cmq	DaN/cmq			
1.43	0.01	5.68	1.663	11.172	0.6	1	6.72

Asta: 22 [1058, 1084]

Sez. R: b = 0.16m h = 0.32m L = 4.42mCrit.Prog: Legno Pressofl Verifica: Verificata

Verifica a pressoflessione (§4.4.8.1.8 - NTC 2008, §6.5.2.3 - CNR DT 206/2007)

Parametri di verifica: km = 0.70 kh,y = 1.06 kh,z = 1.10 kcrit,c = 0.39 kcrit,m = 1.00 Lo = 4.42m Leff = 3.98m

Instabilità di colonna: Instabilità nel piano XY Instabilità di trave: Trascurabile

X	Nd	Myd	Mzd	σc0d	σmyd	σmzd	fc0d	fmyd	fmzd	Kmod	Comb.	SF
m	kN	kN*m	kN*m	DaN/cm q	DaN/cm q	DaN/cm q	DaN/cm q	DaN/cm q	DaN/cm q			
4.42	-22.76	14.65	1.87	-4.445	53.664	13.709	165.517	176.256	182.069	1	(12+13)- I-3	2.35

Verifica a taglio (§4.4.8.1.9 - NTC 2008)

X	Tyd	Tzd	τd	fvd	Kmod	Comb.	SF
m	kN	kN	DaN/cmq	DaN/cmq			
0.00	0.67	6.93	2.041	18.621	1	(12+13)-I-3	9.12

Asta: 23 [1059 , 1087]

Sez. R: b = 0.16m h = 0.32m L = 4.42mCrit.Prog: Legno Pressofl Verifica: Verificata

Verifica a pressoflessione (§4.4.8.1.8 - NTC 2008, §6.5.2.3 - CNR DT 206/2007)

Parametri di verifica: km = 0.70 kh,y = 1.06 kh,z = 1.10 kcrit,c = 0.39 kcrit,m = 1.00 Lo = 4.42m Leff = 3.98m

Instabilità di colonna: Instabilità nel piano XY Instabilità di trave: Trascurabile

X	Nd	Myd	Mzd	σc0d	σmyd	σmzd	fc0d	fmyd	fmzd	Kmod	Comb.	SF
m	kN	kN*m	kN*m	DaN/cm	DaN/cm	DaN/cm	DaN/cm	DaN/cm	DaN/cm			
***	KI	KI V III	KI V III	q	q	q	q	q	q			
4.42	-22.33	14.43	1.89	-4.362	52.844	13.854	165.517	176.256	182.069	1	(12+13)- I-1	2.38

X	Tyd	Tzd	τd	fvd	Kmod	Comb.	SF
m	kN	kN	DaN/cmq	DaN/cmq			
0.00	0.68	6.83	2.011	18.621	1	(12+13)-I-1	9.26

Asta: 24 [1060 , 1078]

Sez. R: b = 0.16m h = 0.32m L = 3.92mCrit.Prog: Legno_Pressofl Verifica: Verificata

Verifica a pressoflessione (§4.4.8.1.8 - NTC 2008, §6.5.2.3 - CNR DT 206/2007)

Parametri di verifica: km = 0.70 kh,y = 1.06 kh,z = 1.10 kcrit,c = 0.48 kcrit,m = 1.00 Lo = 3.92m Leff = 3.53m

Instabilità di colonna: **Instabilità nel piano XY** Instabilità di trave: **Trascurabile**

X	Nd	Myd	Mzd	σc0d	σmyd	σmzd	fc0d	fmyd	fmzd	Kmod	Comb.	SF
m	kN	kN*m	kN*m	DaN/cm	DaN/cm	DaN/cm	DaN/cm	DaN/cm	DaN/cm			
111	WT.	KI V III	KI V III	α	α	α	α	α				
				Ч		Ч	Ч	Ч	q			

Verifica a taglio (§4.4.8.1.9 - NTC 2008)

X	Tyd	Tzd	τd	fvd	Kmod	Comb.	SF
m	kN	kN	DaN/cmq	DaN/cmq			
0.00	0.42	5.79	1.701	18.621	1	(12+13)-I-1	10.95

Asta: 25 [1061 , 1081]

Sez. R: b = 0.16m h = 0.32m L = 3.92mCrit.Prog: Legno_Pressofl Verifica: Verificata

Verifica a pressoflessione (§4.4.8.1.8 - NTC 2008, §6.5.2.3 - CNR DT 206/2007)

Parametri di verifica: km = 0.70 kh,y = 1.06 kh,z = 1.10 kcrit,c = 0.48 kcrit,m = 1.00 Lo = 3.92m Leff = 3.53m

Instabilità di colonna: **Instabilità nel piano XY** Instabilità di trave: **Trascurabile**

7	X	Nd	Myd	Mzd	σc0d	σmyd	σmzd	fc0d	fmyd	fmzd	Kmod	Comb.	SF
r	m	kN	kN*m	kN*m	DaN/cm	DaN/cm	DaN/cm	DaN/cm	DaN/cm	DaN/cm			
		NI 1	KI V III	K. V. III	q	q	q	q	q	q			
3.	.92	-25.43	1.71	6.38	-4.968	6.263	46.693	165.517	176.256	182.069	1	(12+13)- II-2	2.91

Verifica a taglio (§4.4.8.1.9 - NTC 2008)

X	Tyd	Tzd	τd	fvd	Kmod	Comb.	SF
m	kN	kN	DaN/cmq	DaN/cmq			
0.00	0.39	5.75	1.688	18.621	1	(12+13)-I-3	11.03

Asta: 26 [1093 , 1074]

Sez. R: b = 0.16m h = 0.32m L = 4.56mCrit.Prog: Legno_Arcareccio Verifica: Verificata

Verifica a flessione (§4.4.8.1.6, §4.4.8.1.1 - NTC 2008)

Parametri di verifica: km = 0.70 kh, y = 1.06 kh, z = 1.10 kcrit, m = 1.00 leff = 4.10m

X	Myd	Mzd	σmyd	σmzd	fmyd	fmzd	Kmod	Comb.	SF
m	kN*m	kN*m	DaN/cmq	DaN/cmq	DaN/cmq	DaN/cmq			
0.00	9.71	0.00	35.541	0.000	176.256	182.069	1	(12+13)-II- 2	4.96

X	Tyd	Tzd	τd	fvd	Kmod	Comb.	SF
m	kN	kN	DaN/cmq	DaN/cmq			
0.00	0.01	7.02	2.056	11.172	0.6	1	5.43

Asta: 27 [1094 , 0]

Sez. R: b = 0.16m h = 0.32m L = 2.05mCrit.Prog: Legno_Arcareccio Verifica: Verificata

Verifica a flessione (§4.4.8.1.6, §4.4.8.1.1 - NTC 2008)

Parametri di verifica: km = 0.70 kh,y = 1.06 kh,z = 1.10 kcrit,m = 1.00 Leff = 1.85m

Instabilità di trave: Trascurabile

X	Myd	Mzd	σmyd	σmzd	fmyd	fmzd	Kmod	Comb.	SF
m	kN*m	kN*m	DaN/cmq	DaN/cmq	DaN/cmq	DaN/cmq			
2.05	7.59	0.00	27.787	0.000	176.256	182.069	1	(12+13)-II- 1	6.34

Verifica a taglio (§4.4.8.1.9 - NTC 2008)

x	Tyd	Tzd	τd	fvd	Kmod	Comb.	SF
m	kN	kN	DaN/cmq	DaN/cmq			
0.00	1.88	8.17	2.458	18.621	1	(12+13)-II-2	7.58

Asta: 28 [1094 , 1095]

Sez. R: b = 0.20m h = 0.40m L = 1.43mCrit.Prog: Legno Arcareccio Verifica: Verificata

Verifica a flessione (§4.4.8.1.6, §4.4.8.1.1 - NTC 2008)

Parametri di verifica: km = 0.70 kh,y = 1.04 kh,z = 1.10 kcrit,m = 1.00 Leff = 1.28m

Instabilità di trave: Trascurabile

X	Myd	Mzd	σmyd	σmzd	fmyd	fmzd	Kmod	Comb.	SF
m	kN*m	kN*m	DaN/cmq	DaN/cmq	DaN/cmq	DaN/cmq			
1.43	24.44	0.00	45.818	0.000	103.420	109.241	0.6	1	2.26

Verifica a taglio (§4.4.8.1.9 - NTC 2008)

X	Tyd	Tzd	τd	fvd	Kmod	Comb.	SF
m	kN	kN	DaN/cmq	DaN/cmq			
0.00	0.22	22.32	4.185	11.172	0.6	1	2.67

Asta: 29 [1095 , 1096]

Sez. R: b = 0.20m h = 0.40m L = 1.43mCrit.Prog: Legno_Arcareccio Verifica: Verificata

Verifica a flessione (§4.4.8.1.6, §4.4.8.1.1 - NTC 2008)

Parametri di verifica: km = 0.70 kh,y = 1.04 kh,z = 1.10 kcrit,m = 1.00 Leff = 1.28m

Instabilità di trave: Trascurabile

X	Myd	Mzd	σmyd	σmzd	fmyd	fmzd	Kmod	Comb.	SF
m	kN*m	kN*m	DaN/cmq	DaN/cmq	DaN/cmq	DaN/cmq			
1.43	25.94	0.00	48.635	0.000	103.420	109.241	0.6	1	2.13

Verifica a taglio (§4.4.8.1.9 - NTC 2008)

X	Tyd	Tzd	τd	fvd	Kmod	Comb.	SF
m	kN	kN	DaN/cmq	DaN/cmq			
0.00	0.16	2.56	0.481	11.172	0.6	1	23.22

Asta: 30 [1096 , 1097]

Sez. R: b = 0.20m h = 0.40m L = 1.43m

Crit.Prog: Legno Arcareccio Verifica: Verificata

Verifica a flessione (§4.4.8.1.6, §4.4.8.1.1 - NTC 2008)

Parametri di verifica: km = 0.70 kh,y = 1.04 kh,z = 1.10 kcrit,m = 1.00

Instabilità di trave: Trascurabile

X	Myd	Mzd	σmyd	σmzd	fmyd	fmzd	Kmod	Comb.	SF
m	kN*m	kN*m	DaN/cmq	DaN/cmq	DaN/cmq	DaN/cmq			
0.00	26.30	0.00	49.312	0.000	103.420	109.241	0.6	1	2.10

Leff = 1.28m

Verifica a taglio (§4.4.8.1.9 - NTC 2008)

X	Tyd	Tzd	τd	fvd	Kmod	Comb.	SF
m	kN	kN	DaN/cmq	DaN/cmq			
1.43	0.35	16.57	3.108	11.172	0.6	1	3.59

Asta: 31 [1097, 1092]

Sez. R: b = 0.20m h = 0.40m L = 1.43mCrit.Prog: Legno Arcareccio Verifica: Verificata

Verifica a flessione (§4.4.8.1.6, §4.4.8.1.1 - NTC 2008)

Parametri di verifica: km = 0.70 kh,y = 1.04 kh,z = 1.10 kcrit,m = 1.00 Leff = 1.28m

Instabilità di trave: Trascurabile

X	Myd	Mzd	σmyd	σmzd	fmyd	fmzd	Kmod	Comb.	SF
m	kN*m	kN*m	DaN/cmq	DaN/cmq	DaN/cmq	DaN/cmq			
1.43	48.22	0.00	90.415	0.000	103.420	109.241	0.6	1	1.14

Verifica a taglio (§4.4.8.1.9 - NTC 2008)

X	Tyd	Tzd	τd	fvd	Kmod	Comb.	SF
m	kN	kN	DaN/cmq	DaN/cmq			
1.43	0.29	37.92	7.111	11.172	0.6	1	1.57

Asta: 32 [1098 , 1099]

Sez. R: b = 0.20m h = 0.40m L = 1.43mCrit.Prog: Legno_Arcareccio Verifica: Verificata

Verifica a flessione (§4.4.8.1.6, §4.4.8.1.1 - NTC 2008)

Parametri di verifica: km = 0.70 kh,y = 1.04 kh,z = 1.10 kcrit,m = 1.00 Leff = 1.28m

Instabilità di trave: Trascurabile

X	Myd	Mzd	σmyd	σmzd	fmyd	fmzd	Kmod	Comb.	SF
m	kN*m	kN*m	DaN/cmq	DaN/cmq	DaN/cmq	DaN/cmq			
1.43	26.76	0.00	50.184	0.000	103.420	109.241	0.6	1	2.06

Verifica a taglio (§4.4.8.1.9 - NTC 2008)

X	Tyd	Tzd	τd	fvd	Kmod	Comb.	SF
m	kN	kN	DaN/cmq	DaN/cmq			
0.00	0.34	16.76	3.143	11.172	0.6	1	3.55

Asta: 33 [1099 , 1100]

Sez. R: b = 0.20m h = 0.40m L = 1.43mCrit.Prog: Legno Arcareccio Verifica: Verificata

Verifica a flessione (§4.4.8.1.6, §4.4.8.1.1 - NTC 2008)

Parametri di verifica: km = 0.70 kh,y = 1.04 kh,z = 1.10 kcrit,m = 1.00 Leff = 1.28m

X	Myd	Mzd	σmyd	σmzd	fmyd	fmzd	Kmod	Comb.	SF
m	kN*m	kN*m	DaN/cmq	DaN/cmq	DaN/cmq	DaN/cmq			
0.00	26.42	0.00	49.547	0.000	103.420	109.241	0.6	1	2.09

X	Tyd	Tzd	τd	fvd	Kmod	Comb.	SF
m	kN	kN	DaN/cmq	DaN/cmq			
1.43	0.19	2.30	0.433	11.172	0.6	1	25.78

Asta: 34 [1100, 1093]

Sez. R: b = 0.20m h = 0.40m L = 1.43mCrit.Prog: Legno_Arcareccio Verifica: Verificata

Verifica a flessione (§4.4.8.1.6, §4.4.8.1.1 - NTC 2008)

Parametri di verifica: km = 0.70 kh,y = 1.04 kh,z = 1.10 kcrit,m = 1.00 Leff = 1.28m

Instabilità di trave: Trascurabile

X	Myd	Mzd	σmyd	σmzd	fmyd	fmzd	Kmod	Comb.	SF
m	kN*m	kN*m	DaN/cmq	DaN/cmq	DaN/cmq	DaN/cmq			
0.00	25.36	0.00	47.545	0.000	103.420	109.241	0.6	1	2.18

Verifica a taglio (§4.4.8.1.9 - NTC 2008)

X	Tyd	Tzd	τd	fvd	Kmod	Comb.	SF
m	kN	kN	DaN/cmq	DaN/cmq			
1.43	0.24	22.31	4.183	11.172	0.6	1	2.67

Asta: 35 [1083 , 1095]

Sez. R: b = 0.16m h = 0.32m L = 4.56mCrit.Prog: Legno_Arcareccio Verifica: Verificata

Verifica a flessione (§4.4.8.1.6, §4.4.8.1.1 - NTC 2008)

Parametri di verifica: km = 0.70 kh,y = 1.06 kh,z = 1.10 kcrit,m = 1.00 Leff = 4.10m

Instabilità di trave: Trascurabile

X	Myd	Mzd	σmyd	σmzd	fmyd	fmzd	Kmod	Comb.	SF
m	kN*m	kN*m	DaN/cmq	DaN/cmq	DaN/cmq	DaN/cmq			
2.28	5.45	0.00	19.973	0.000	105.753	109.241	0.6	1	5.29

Verifica a taglio (§4.4.8.1.9 - NTC 2008)

х	Tyd	Tzd	τd	fvd	Kmod	Comb.	SF
m	kN	kN	DaN/cmq	DaN/cmq			
4.56	0.01	9.39	2.752	11.172	0.6	1	4.06

Asta: 36 [1095 , 1082]

Sez. R: b = 0.16m h = 0.32m L = 4.46mCrit.Prog: Legno Arcareccio Verifica: Verificata

Verifica a flessione (§4.4.8.1.6, §4.4.8.1.1 - NTC 2008)

Parametri di verifica: km = 0.70 kh,y = 1.06 kh,z = 1.10 kcrit,m = 1.00 leff = 4.01m

Instabilità di trave: Trascurabile

X	Myd	Mzd	σmyd	σmzd	fmyd	fmzd	Kmod	Comb.	SF
m	kN*m	kN*m	DaN/cmq	DaN/cmq	DaN/cmq	DaN/cmq			
2.23	5.23	0.00	19.136	0.000	105.753	109.241	0.6	1	5.53

Verifica a taglio (§4.4.8.1.9 - NTC 2008)

<u> </u>	10 (3 ////0121)	, - e - e - e /					
X	Tyd	Tzd	τd	fvd	Kmod	Comb.	SF
m	kN	kN	DaN/cmq	DaN/cmq			
0.00	0.01	9.15	2.682	11.172	0.6	1	4.17

Asta: 37 [1084, 1096]

Sez. R: b = 0.16m h = 0.32m L = 4.56mCrit.Prog: Legno_Arcareccio Verifica: Verificata

Verifica a flessione (§4.4.8.1.6, §4.4.8.1.1 - NTC 2008)

Parametri di verifica: km = 0.70 kh,y = 1.06 kh,z = 1.10 kcrit,m = 1.00 Leff = 4.10m

Instabilità di trave: Trascurabile

X	Myd	Mzd	σmyd	σmzd	fmyd	fmzd	Kmod	Comb.	SF
m	kN*m	kN*m	DaN/cmq	DaN/cmq	DaN/cmq	DaN/cmq			
0.00	6.57	0.00	24.062	0.000	105.753	109.241	0.6	1	4.39

Verifica a taglio (§4.4.8.1.9 - NTC 2008)

x	Tyd	Tzd	τd	fvd	Kmod	Comb.	SF
m	kN	kN	DaN/cmq	DaN/cmq			
0.00	0.00	10.01	2.934	11.172	0.6	1	3.81

Asta: 38 [1096 , 1081]

Sez. R: b = 0.16m h = 0.32m L = 4.46mCrit.Prog: Legno Arcareccio Verifica: Verificata

Verifica a flessione (§4.4.8.1.6, §4.4.8.1.1 - NTC 2008)

Parametri di verifica: km = 0.70 kh,y = 1.06 kh,z = 1.10 kcrit,m = 1.00 Leff = 4.01m

Instabilità di trave: Trascurabile

X	Myd	Mzd	σmyd	σmzd	fmyd	fmzd	Kmod	Comb.	SF
m	kN*m	kN*m	DaN/cmq	DaN/cmq	DaN/cmq	DaN/cmq			
4.46	6.62	0.00	24.246	0.000	105.753	109.241	0.6	1	4.36

Verifica a taglio (§4.4.8.1.9 - NTC 2008)

X	Tyd	Tzd	τd	fvd	Kmod	Comb.	SF
m	kN	kN	DaN/cmq	DaN/cmq			
4.46	0.00	9.87	2.891	11.172	0.6	1	3.86

Asta: 39 [1085 , 1097]

Sez. R: b = 0.16m h = 0.32m L = 4.56mCrit.Prog: Legno_Arcareccio Verifica: Verificata

Verifica a flessione (§4.4.8.1.6, §4.4.8.1.1 - NTC 2008)

Parametri di verifica: km = 0.70 kh,y = 1.06 kh,z = 1.10 kcrit,m = 1.00 Leff = 4.10m

Instabilità di trave: Trascurabile

	X	Myd	Mzd	σmyd	σmzd	fmyd	fmzd	Kmod	Comb.	SF			
	m	kN*m	kN*m	DaN/cmq	DaN/cmq	DaN/cmq	DaN/cmq						
Ī	4.56	7.09	0.00	25.967	0.000	105.753	109.241	0.6	1	4.07			

Verifica a taglio (§4.4.8.1.9 - NTC 2008)

X	Tyd	Tzd	τd	fvd	Kmod	Comb.	SF
m	kN	kN	DaN/cmq	DaN/cmq			
4.56	0.01	10.16	2.976	11.172	0.6	1	3.75

Asta: 40 [1097, 1080]

Sez. R: b = 0.16m h = 0.32m L = 4.46mCrit.Prog: Legno Arcareccio Verifica: Verificata

Verifica a flessione (§4.4.8.1.6, §4.4.8.1.1 - NTC 2008)

Parametri di verifica: km = 0.70 kh,y = 1.06 kh,z = 1.10 kcrit,m = 1.00 Leff = 4.01m

11.5.000.0000 00.0000											
X	Myd	Mzd	σmyd	σmzd	fmyd	fmzd	Kmod	Comb.	SF		

X	Myd	Mzd	σmyd	σmzd	fmyd	fmzd	Kmod	Comb.	SF
m	kN*m	kN*m	DaN/cmq	DaN/cmq	DaN/cmq	DaN/cmq			
0.00	7.07	0.00	25.877	0.000	105.753	109.241	0.6	1	4.09

Х	Tyd	Tzd	τd	fvd	Kmod	Comb.	SF
m	kN	kN	DaN/cmq	DaN/cmq			
0.00	0.01	9.97	2.922	11.172	0.6	1	3.82

Asta: 41 [1086 , 1098]

Sez. R: b = 0.16m h = 0.32m L = 4.56mCrit.Prog: Legno_Arcareccio Verifica: Verificata

Verifica a flessione (§4.4.8.1.6, §4.4.8.1.1 - NTC 2008)

Parametri di verifica: km = 0.70 kh,y = 1.06 kh,z = 1.10 kcrit,m = 1.00 leff = 4.10m

Instabilità di trave: Trascurabile

X	Myd	Mzd	σmyd	σmzd	fmyd	fmzd	Kmod	Comb.	SF
m	kN*m	kN*m	DaN/cmq	DaN/cmq	DaN/cmq	DaN/cmq			
4.56	7.02	0.00	25.707	0.000	105.753	109.241	0.6	1	4.11

Verifica a taglio (§4.4.8.1.9 - NTC 2008)

X	Tyd	Tzd	τd	fvd	Kmod	Comb.	SF
m	kN	kN	DaN/cmq	DaN/cmq			
4.56	0.01	10.17	2.979	11.172	0.6	1	3.75

Asta: 42 [1098 , 1079]

Sez. R: b = 0.16m h = 0.32m L = 4.46mCrit.Prog: Legno Arcareccio Verifica: Verificata

Verifica a flessione (§4.4.8.1.6, §4.4.8.1.1 - NTC 2008)

Parametri di verifica: km = 0.70 kh,y = 1.06 kh,z = 1.10 kcrit,m = 1.00 leff = 4.01m

Instabilità di trave: Trascurabile

X	Myd	Mzd	σmyd	σmzd	fmyd	fmzd	Kmod	Comb.	SF
m	kN*m	kN*m	DaN/cmq	DaN/cmq	DaN/cmq	DaN/cmq			
0.00	7.03	0.00	25.740	0.000	105.753	109.241	0.6	1	4.11

Verifica a taglio (§4.4.8.1.9 - NTC 2008)

r en tyre er er reig	10 (3 /11/10121) 1	11 6 2000/					
X	Tyd	Tzd	τd	fvd	Kmod	Comb.	SF
m	kN	kN	DaN/cmq	DaN/cmq			
0.00	0.02	9.99	2.928	11.172	0.6	1	3.82

Asta: 43 [1088 , 1100]

Sez. R: b = 0.16m h = 0.32m L = 4.56mCrit.Prog: Legno_Arcareccio Verifica: Verificata

Verifica a flessione (§4.4.8.1.6, §4.4.8.1.1 - NTC 2008)

Parametri di verifica: km = 0.70 kh,y = 1.06 kh,z = 1.10 kcrit,m = 1.00 Leff = 4.10m

Instabilità di trave: Trascurabile

X	Myd	Mzd	σmyd	σmzd	fmyd	fmzd	Kmod	Comb.	SF
m	kN*m	kN*m	DaN/cmq	DaN/cmq	DaN/cmq	DaN/cmq			
2.28	5.70	0.00	20.858	0.000	105.753	109.241	0.6	1	5.07

Verifica a taglio (§4.4.8.1.9 - NTC 2008)

x	Tyd	Tzd	τd	fvd	Kmod	Comb.	SF
m	kN	kN	DaN/cmq	DaN/cmq			
4.56	0.00	9.50	2.782	11.172	0.6	1	4.02

Asta: 44 [1100 , 1077]

Sez. R: b = 0.16m h = 0.32m L = 4.46mCrit.Prog: Legno Arcareccio Verifica: Verificata

Verifica a flessione (§4.4.8.1.6, §4.4.8.1.1 - NTC 2008)

Parametri di verifica: km = 0.70 kh,y = 1.06 kh,z = 1.10 kcrit,m = 1.00 Leff = 4.01m

Instabilità di trave: Trascurabile

X	Myd	Mzd	σmyd	σmzd	fmyd	fmzd	Kmod	Comb.	SF
m	kN*m	kN*m	DaN/cmq	DaN/cmq	DaN/cmq	DaN/cmq			
0.00	5.41	0.00	19.814	0.000	105.753	109.241	0.6	1	5.34

Verifica a taglio (§4.4.8.1.9 - NTC 2008)

x	Tyd	Tzd	τd	fvd	Kmod	Comb.	SF
m	kN	kN	DaN/cmq	DaN/cmq			
0.00	0.00	9.30	2.724	11.172	0.6	1	4.10

Asta: 45 [1087 , 1099]

Sez. R: b = 0.16m h = 0.32m L = 4.56mCrit.Prog: Legno Arcareccio Verifica: Verificata

Verifica a flessione (§4.4.8.1.6, §4.4.8.1.1 - NTC 2008)

Parametri di verifica: km = 0.70 kh,y = 1.06 kh,z = 1.10 kcrit,m = 1.00 Leff = 4.10m

Instabilità di trave: **Trascurabile**

X	Myd	Mzd	σmyd	σmzd	fmyd	fmzd	Kmod	Comb.	SF
m	kN*m	kN*m	DaN/cmq	DaN/cmq	DaN/cmq	DaN/cmq			
0.00	6.58	0.00	24.110	0.000	105.753	109.241	0.6	1	4.39

Verifica a taglio (§4.4.8.1.9 - NTC 2008)

X	Tyd	Tzd	τd	fvd	Kmod	Comb.	SF
m	kN	kN	DaN/cmq	DaN/cmq			
0.00	0.01	10.06	2.947	11.172	0.6	1	3.79

Asta: 46 [1099 , 1078]

Sez. R: b = 0.16m h = 0.32m L = 4.46mCrit.Prog: Legno Arcareccio Verifica: Verificata

Verifica a flessione (§4.4.8.1.6, §4.4.8.1.1 - NTC 2008)

Parametri di verifica: km = 0.70 kh,y = 1.06 kh,z = 1.10 kcrit,m = 1.00 leff = 4.01m

Instabilità di trave: Trascurabile

X	Myd	Mzd	σmyd	σmzd	fmyd	fmzd	Kmod	Comb.	SF
m	kN*m	kN*m	DaN/cmq	DaN/cmq	DaN/cmq	DaN/cmq			
4.46	6.63	0.00	24.295	0.000	105.753	109.241	0.6	1	4.35

Verifica a taglio (§4.4.8.1.9 - NTC 2008)

X	Tyd	Tzd	τd	fvd	Kmod	Comb.	SF
m	kN	kN	DaN/cmq	DaN/cmq			
4.46	0.01	9.89	2.898	11.172	0.6	1	3.86

Asta: 47 [1092 , 1069]

Sez. R: b = 0.16m h = 0.32m L = 4.17mCrit.Prog: Legno_Pressofl Verifica: Verificata

Verifica a pressoflessione (§4.4.8.1.8 - NTC 2008, §6.5.2.3 - CNR DT 206/2007)

Parametri di verifica: km = 0.70 kh,y = 1.06 kh,z = 1.10 kcrit,c = 0.43 kcrit,m = 1.00 Lo = 4.17m Leff = 1.00

3.75m

Instabilità di colonna: **Instabilità nel piano XY** Instabilità di trave: **Trascurabile**

111514101111	ti tii toio.	1.05000				CITITED ELL L.						
X	Nd	Myd	Mzd	σc0d	σmyd	σmzd	fc0d	fmyd	fmzd	Kmod	Comb.	SF
m	kN	kN*m	kN*m	DaN/cm	DaN/cm	DaN/cm	DaN/cm	DaN/cm	DaN/cm			
	11.	161 111	11.	q	q	q	q	q	q			
4.17	-70.59	20.25	0.40	-13.787	74.159	2.932	165.517	176.256	182.069	1	(12+13)- II-1	1.60

Verifica a taglio (§4.4.8.1.9 - NTC 2008)

- restification total	10 (3 /1/10121) 1	<u> </u>					
X	x Tyd		Tzd td		Kmod	Comb.	SF
m	kN	kN	DaN/cmq	DaN/cmq			
0.00	0.19	9.01	2.641	18.621	1	(12+13)-II-1	7.05

Asta: 81 [1093 , 1068]

Sez. R: b = 0.16m h = 0.32m L = 4.17mCrit.Prog: Legno_Arcareccio Verifica: Verificata

Verifica a flessione (§4.4.8.1.6, §4.4.8.1.1 - NTC 2008)

Parametri di verifica: km = 0.70 kh,y = 1.06 kh,z = 1.10 kcrit,m = 1.00 Leff = 3.75m

Instabilità di trave: Trascurabile

X	Myd	Mzd	σmyd	σmzd	fmyd	fmzd	Kmod	Comb.	SF
m	kN*m	kN*m	DaN/cmq	DaN/cmq	DaN/cmq	DaN/cmq			
0.00	14.33	0.00	52.477	0.000	176.256	182.069	1	(12+13)-II- 2	3.36

Verifica a taglio (§4.4.8.1.9 - NTC 2008)

recipied di tagi	10 (3 /1/10121) 1	110 2000/					
X	Tyd	Tzd	τd	fvd	Kmod	Comb.	SF
m	kN	kN	DaN/cmq	DaN/cmq			
0.00	0.82	7.20	2.122	18.621	1	(12+13)-II-2	8.78

Asta: 90 [0 , 1156]

Sez. R: b = 0.16m h = 0.32m L = 4.28mCrit.Prog: Legno Arcareccio Verifica: Verificata

Verifica a flessione (§4.4.8.1.6, §4.4.8.1.1 - NTC 2008)

Parametri di verifica: km = 0.70 kh,y = 1.06 kh,z = 1.10 kcrit,m = 1.00 Leff = 3.85m

Instabilità di trave: Trascurabile

Tribute titue t	at there. I it	cui uone							
X	Myd	Mzd	σmyd	σmzd	fmyd	fmzd	Kmod	Comb.	SF
m	kN*m	kN*m	DaN/cmq	DaN/cmq	DaN/cmq	DaN/cmq			
4.28	12.21	0.00	44.716	0.000	176.256	182.069	1	(12+13)-II-	3.94

Verifica a taglio (§4.4.8.1.9 - NTC 2008)

X	Tyd	Tzd	τd	fvd	Kmod	Comb.	SF
m	kN	kN	DaN/cmq	DaN/cmq			
0.00	0.04	5.48	1.607	18.621	1	(12+13)-II-2	11.59

Asta: 91 [1156 , 1175]

Sez. R: b = 0.16m h = 0.32m L = 4.42mCrit.Prog: Legno_Pressofl Verifica: Verificata

Verifica a pressoflessione (§4.4.8.1.8 - NTC 2008, §6.5.2.3 - CNR DT 206/2007)

Parametri di verifica: km = 0.70 kh,y = 1.06 kh,z = 1.10 kcrit,c = 0.39 kcrit,m = 1.00 Lo = 4.42m Leff = 2.00

3.98m

Instabilità di colonna: **Instabilità nel piano XY** Instabilità di trave: **Trascurabile**

X	Nd	Myd	Mzd	σc0d	σmyd	σmzd	fc0d	fmyd	fmzd	Kmod	Comb.	SF
m	kN	kN*m	kN*m	DaN/cm	DaN/cm	DaN/cm	DaN/cm	DaN/cm	DaN/cm			

X	Nd	Myd	Mzd	σc0d	σmyd	σmzd	fc0d	fmyd	fmzd	Kmod	Comb.	SF
				q	q	q	q	q	q			
0.00	-15.19	9.08	0.36	-2.966	33.252	2.649	165.517	176.256	182.069	1	(12+13)- II-1	4.08

X	Tyd	Tzd	τd	fvd	Kmod	Comb.	SF
m	kN	kN	DaN/cmq	DaN/cmq			
0.00	0.14	3.84	1.124	18.621	1	(12+13)-II-1	16.56

Asta: 92 [100 , 1256]

Sez. R: b = 0.16m h = 0.32m L = 4.28mCrit.Prog: Legno_Arcareccio Verifica: Verificata

Verifica a flessione (§4.4.8.1.6, §4.4.8.1.1 - NTC 2008)

Parametri di verifica: km = 0.70 kh,y = 1.06 kh,z = 1.10 kcrit,m = 1.00 Leff = 3.85m

Instabilità di trave: Trascurabile

X	Myd	Mzd	σmyd	σmzd	fmyd	fmzd	Kmod	Comb.	SF
m	kN*m	kN*m	DaN/cmq	DaN/cmq	DaN/cmq	DaN/cmq			
4.28	9.47	0.00	34.668	0.000	176.256	182.069	1	(12+13)-II- 2	5.08

Verifica a taglio (§4.4.8.1.9 - NTC 2008)

X	Tyd	Tzd	τd	fvd	Kmod	Comb.	SF
m	kN	kN	DaN/cmq	DaN/cmq			
0.00	0.13	4.12	1.206	18.621	1	(12+13)-II-2	15.44

Asta: 98 [1153 , 1094]

Sez. R: b = 0.16m h = 0.32m L = 4.17mCrit.Prog: Legno_Arcareccio Verifica: Verificata

Verifica a flessione (§4.4.8.1.6, §4.4.8.1.1 - NTC 2008)

Parametri di verifica: km = 0.70 kh,y = 1.06 kh,z = 1.10 kcrit,m = 1.00 Leff = 3.75m

Instabilità di trave: Trascurabile

X	Myd	Mzd	σmyd	σmzd	fmyd	fmzd	Kmod	Comb.	SF
m	kN*m	kN*m	DaN/cmq	DaN/cmq	DaN/cmq	DaN/cmq			
4.17	12.99	0.00	47.564	0.000	176.256	182.069	1	(12+13)-II- 1	3.71

Verifica a taglio (§4.4.8.1.9 - NTC 2008)

X	Tyd	Tzd	τd	fvd	Kmod	Comb.	SF
m	kN	kN	DaN/cmq	DaN/cmq			
0.00	0.80	6.40	1.889	18.621	1	(12+13)-II-1	9.86

Asta: 48 [1088 , 1112]

Sez. R: b = 0.16m h = 0.32m L = 1.00mCrit.Prog: Legno_Arcareccio Verifica: Verificata

Verifica a flessione (§4.4.8.1.6, §4.4.8.1.1 - NTC 2008)

Parametri di verifica: km = 0.70 kh,y = 1.06 kh,z = 1.10 kcrit,m = 1.00 Leff = 0.90m

X	Myd	Mzd	σmyd	σmzd	fmyd	fmzd	Kmod	Comb.	SF
m	kN*m	kN*m	DaN/cmq	DaN/cmq	DaN/cmq	DaN/cmq			
0.00	3.19	0.00	11.668	0.000	105.753	109.241	0.6	1	9.06

X	Tyd	Tzd	τd	fvd	Kmod	Comb.	SF
m	kN	kN	DaN/cmq	DaN/cmq			
0.00	0.01	5.05	1.478	11.172	0.6	1	7.56

Asta: 49 [1087 , 1111]

Sez. R: b = 0.16m h = 0.32m L = 1.00mCrit.Prog: Legno_Arcareccio Verifica: Verificata

Verifica a flessione (§4.4.8.1.6, §4.4.8.1.1 - NTC 2008)

Parametri di verifica: km = 0.70 kh,y = 1.06 kh,z = 1.10 kcrit,m = 1.00 Leff = 0.90m

Instabilità di trave: Trascurabile

X	Myd	Mzd	σmyd	σmzd	fmyd	fmzd	Kmod	Comb.	SF
m	kN*m	kN*m	DaN/cmq	DaN/cmq	DaN/cmq	DaN/cmq			
0.00	4.14	0.00	15.151	0.000	105.753	109.241	0.6	1	6.98

Verifica a taglio (§4.4.8.1.9 - NTC 2008)

- to tyte at at tags	10 (3 /1/10121) 1	110 2000)					
X	Tyd	Tzd	τd	fvd	Kmod	Comb.	SF
m	kN	kN	DaN/cmq	DaN/cmq			
0.00	0.05	6.17	1.807	11.172	0.6	1	6.18

Asta: 50 [1086 , 1110]

Sez. R: b = 0.16m h = 0.32m L = 1.00mCrit.Prog: Legno Arcareccio Verifica: Verificata

Verifica a flessione (§4.4.8.1.6, §4.4.8.1.1 - NTC 2008)

Parametri di verifica: km = 0.70 kh,y = 1.06 kh,z = 1.10 kcrit,m = 1.00 Leff = 0.90m

Instabilità di trave: Trascurabile

X	Myd	Mzd	σmyd	σmzd	fmyd	fmzd	Kmod	Comb.	SF
m	kN*m	kN*m	DaN/cmq	DaN/cmq	DaN/cmq	DaN/cmq			
0.00	2.43	0.00	8.883	0.000	105.753	109.241	0.6	1	11.91

Verifica a taglio (§4.4.8.1.9 - NTC 2008)

X	Tyd	Tzd	τd	fvd	Kmod	Comb.	SF
m	kN	kN	DaN/cmq	DaN/cmq			
0.00	0.09	4.36	1.278	11.172	0.6	1	8.74

Asta: 51 [1085 , 1109]

Sez. R: b = 0.16m $\bar{h} = 0.32m$ L = 1.00mCrit.Prog: Legno_Arcareccio Verifica: Verificata

Verifica a flessione (§4.4.8.1.6, §4.4.8.1.1 - NTC 2008)

Parametri di verifica: km = 0.70 kh,y = 1.06 kh,z = 1.10 kcrit,m = 1.00 Leff = 0.90m

Instabilità di trave: Trascurabile

X	Myd	Mzd	σmyd	σmzd	fmyd	fmzd	Kmod	Comb.	SF
m	kN*m	kN*m	DaN/cmq	DaN/cmq	DaN/cmq	DaN/cmq			
0.00	2.64	0.00	9.658	0.000	105.753	109.241	0.6	1	10.95

Verifica a taglio (§4.4.8.1.9 - NTC 2008)

X	Tyd	Tzd	τd	fvd	Kmod	Comb.	SF
m	kN	kN	DaN/cmq	DaN/cmq			
0.00	0.09	4.59	1.346	11.172	0.6	1	8.30

Asta: 52 [1084 , 1108]

Sez. R: b = 0.16m h = 0.32m L = 1.00mCrit.Prog: Legno Arcareccio Verifica: Verificata Verifica a flessione (§4.4.8.1.6, §4.4.8.1.1 - NTC 2008)

Parametri di verifica: km = 0.70

kh, y = 1.06

kh, z = 1.10

kcrit, m = 1.00

Leff = 0.90m

Instabilità di trave: Trascurabile

X	Myd	Mzd	σmyd	σmzd	fmyd	fmzd	Kmod	Comb.	SF
m	kN*m	kN*m	DaN/cmq	DaN/cmq	DaN/cmq	DaN/cmq			
0.00	4.09	0.00	14.965	0.000	105.753	109.241	0.6	1	7.07

Verifica a taglio (\$4.4.8.1.9 - NTC 2008)

X	Tyd	Tzd	τd	fvd	Kmod	Comb.	SF
m	kN	kN	DaN/cmq	DaN/cmq			
0.00	0.04	6.09	1.785	11.172	0.6	1	6.26

Asta: 53 [1083 , 1107]

 $Sez. \ R: b = 0.16m$ $\overline{h} = 0.32m$ L = 1.00mVerifica: Verificata Crit.Prog: Legno Arcareccio

Verifica a flessione (§4.4.8.1.6, §4.4.8.1.1 - NTC 2008)

Parametri di verifica: km = 0.70kh, y = 1.06kh,z = 1.10kcrit, m = 1.00Leff = 0.90m

Instabilità di trave: Trascurabile

X	Myd	Mzd	σmyd	σmzd	fmyd	fmzd	Kmod	Comb.	SF
m	kN*m	kN*m	DaN/cmq	DaN/cmq	DaN/cmq	DaN/cmq			
0.00	3.50	0.00	12.809	0.000	105.753	109.241	0.6	1	8.26

Verifica a taglio (§4.4.8.1.9 - NTC 2008)

X	Tyd	Tzd	τd	fvd	Kmod	Comb.	SF
m	kN	kN	DaN/cmq	DaN/cmq			
0.00	0.05	5.33	1.563	11.172	0.6	1	7.15

Asta: 54 [1074 , 1104]

Sez. R: b = 0.16mh = 0.32mL = 1.00mCrit.Prog: Legno_Arcareccio Verifica: Verificata

Verifica a flessione (§4.4.8.1.6, §4.4.8.1.1 - NTC 2008)

Parametri di verifica: km = 0.70kh, y = 1.06kh, z = 1.10kcrit, m = 1.00Leff = 0.90m

Instabilità di trave: Trascurabile

X	Myd	Mzd	σmyd	σmzd	fmyd	fmzd	Kmod	Comb.	SF
m	kN*m	kN*m	DaN/cmq	DaN/cmq	DaN/cmq	DaN/cmq			
0.00	1.12	0.00	4.110	0.000	105.753	109.241	0.6	1	25.73

Verifica a taglio (§4.4.8.1.9 - NTC 2008)

TO THE OF THE ST.	10 (3 /1/10/21)	110 2000/					
X	Tyd	Tzd	τd	fvd	Kmod	Comb.	SF
m	kN	kN	DaN/cmq	DaN/cmq			
0.00	0.06	2.68	0.786	11.172	0.6	1	14.22

Asta: 55 [1075 , 1105]

h = 0.32mL = 1.00mSez. R: b = 0.16mCrit.Prog: Legno Arcareccio Verifica: Verificata

Verifica a flessione (§4.4.8.1.6, §4.4.8.1.1 - NTC 2008)

Parametri di verifica: km = 0.70kh, y = 1.06kh,z = 1.10kcrit, m = 1.00Leff = 0.90m

msiaonna	Instabilità di l'ave. Trascurabite												
X	Myd	Mzd	σmyd	fmyd	fmzd	Kmod	Comb.	SF					
m	kN*m	kN*m	DaN/cmq	DaN/cmq	DaN/cmq	DaN/cmq							
0.00	1.89	0.00	6.916	0.000	105.753	109.241	0.6	1	15.29				

X	Tyd	Tzd	τd	fvd	Kmod	Comb.	SF
m	kN	kN	DaN/cmq	DaN/cmq			
0.00	0.07	4.35	1.275	11.172	0.6	1	8.76

Asta: 56 [1076, 1106]

Sez. R: b = 0.16m h = 0.32m L = 1.00mCrit.Prog: Legno_Arcareccio Verifica: Verificata

Verifica a flessione (§4.4.8.1.6, §4.4.8.1.1 - NTC 2008)

Parametri di verifica: km = 0.70 kh,y = 1.06 kh,z = 1.10 kcrit,m = 1.00 Leff = 0.90m

Instabilità di trave: Trascurabile

Х	Myd	Mzd	σmyd	σmzd	fmyd	fmzd	Kmod	Comb.	SF
m	kN*m	kN*m	DaN/cmq	DaN/cmq	DaN/cmq	DaN/cmq			
0.00	2.14	0.00	7.845	0.000	105.753	109.241	0.6	1	13.48

Verifica a taglio (§4.4.8.1.9 - NTC 2008)

X	Tyd	Tzd	τd	fvd	Kmod	Comb.	SF
m	kN	kN	DaN/cmq	DaN/cmq			
0.00	0.01	4.35	1.275	11.172	0.6	1	8.76

Asta: 113 [1110 , 1111]

Sez. R: b = 0.12m h = 0.16m L = 1.42mCrit.Prog: Legno_Arcareccio Verifica: Verificata

Verifica a flessione (§4.4.8.1.6, §4.4.8.1.1 - NTC 2008)

Parametri di verifica: km = 0.70 kh,y = 1.10 kh,z = 1.10 kcrit,m = 1.00 Leff = 1.28m

Instabilità di trave: Trascurabile

1.1500000000000000000000000000000000000									
X	Myd	Mzd	σmyd	σmzd	fmyd	fmzd	Kmod	Comb.	SF
m	kN*m	kN*m	DaN/cmq	DaN/cmq	DaN/cmq	DaN/cmq			
1.42	0.64	0.00	12.441	0.000	109.241	109.241	0.6	1	8.78

Verifica a taglio (§4.4.8.1.9 - NTC 2008)

X	Tyd	Tzd	τd	fvd	Kmod	Comb.	SF
m	kN	kN	DaN/cmq	DaN/cmq			
1.42	0.03	1.03	0.809	11.172	0.6	1	13.82

Asta: 114 [1111 , 1112]

Sez. R: b = 0.12m h = 0.16m L = 1.43mCrit.Prog: Legno Arcareccio Verifica: Verificata

Verifica a flessione (§4.4.8.1.6, §4.4.8.1.1 - NTC 2008)

Parametri di verifica: km = 0.70 kh,y = 1.10 kh,z = 1.10 kcrit,m = 1.00 Leff = 1.28m

Instabilità di trave: Trascurabile

X		Myd	Mzd	σmyd	σmzd	fmyd	fmzd	Kmod	Comb.	SF
n	n	kN*m	kN*m	DaN/cmq	DaN/cmq	DaN/cmq	DaN/cmq			
0.0	00	0.62	0.00	12.110	0.000	109.241	109.241	0.6	1	9.02

Verifica a taglio (§4.4.8.1.9 - NTC 2008)

X	Tyd	Tzd	τd	fvd	Kmod	Comb.	SF
m	kN	kN	DaN/cmq	DaN/cmq			
0.00	0.00	1.06	0.829	11.172	0.6	1	13.48

Asta: 115 [1112 , 1104]

Sez. R: b = 0.12m h = 0.16m L = 1.42mCrit.Prog: Legno_Arcareccio Verifica: Verificata

Verifica a flessione (§4.4.8.1.6, §4.4.8.1.1 - NTC 2008)

Parametri di verifica: km = 0.70 kh,y = 1.10 kh,z = 1.10 kcrit,m = 1.00 Leff = 1.28m

Instabilità di trave: Trascurabile

X	Myd	Mzd	σmyd	σmzd	fmyd	fmzd	Kmod	Comb.	SF
m	kN*m	kN*m	DaN/cmq	DaN/cmq	DaN/cmq	DaN/cmq			
1.42	0.79	0.00	15.497	0.000	145.655	145.655	0.8	4	9.40

Verifica a taglio (§4.4.8.1.9 - NTC 2008)

х	Tyd	Tzd	τd	fvd	Kmod	Comb.	SF
m	kN	kN	DaN/cmq	DaN/cmq			
0.00	1.39	1.47	1.578	18.621	1	(12+13)-II-1	11.80

Asta: 116 [1105, 1107]

Sez. R: b = 0.12m h = 0.16m L = 1.42mCrit.Prog: Legno Arcareccio Verifica: Verificata

Verifica a flessione (§4.4.8.1.6, §4.4.8.1.1 - NTC 2008)

Parametri di verifica: km = 0.70 kh,y = 1.10 kh,z = 1.10 kcrit,m = 1.00 Leff = 1.28m

Instabilità di trave: Trascurabile

X	Myd	Mzd	σmyd	σmzd	fmyd	fmzd	Kmod	Comb.	SF
m	kN*m	kN*m	DaN/cmq	DaN/cmq	DaN/cmq	DaN/cmq			
0.00	0.74	0.00	14.449	0.000	145.655	145.655	0.8	5	10.08

Verifica a taglio (§4.4.8.1.9 - NTC 2008)

х	Tyd	Tzd	τd	fvd	Kmod	Comb.	SF
m	kN	kN	DaN/cmq	DaN/cmq			
1.42	0.07	1.25	0.980	11.172	0.6	1	11.40

Asta: 117 [1107, 1108]

Sez. R: b = 0.12m h = 0.16m L = 1.42mCrit.Prog: Legno_Arcareccio Verifica: Verificata

Verifica a flessione (§4.4.8.1.6, §4.4.8.1.1 - NTC 2008)

Parametri di verifica: km = 0.70 kh,y = 1.10 kh,z = 1.10 kcrit,m = 1.00 Leff = 1.28m

Instabilità di trave: Trascurabile

X	Myd	Mzd	σmyd	σmzd	fmyd	fmzd	Kmod	Comb.	SF
m	kN*m	kN*m	DaN/cmq	DaN/cmq	DaN/cmq	DaN/cmq			
1.42	0.60	0.00	11.713	0.000	109.241	109.241	0.6	1	9.33

Verifica a taglio (§4.4.8.1.9 - NTC 2008)

X	Tyd	Tzd	τd	fvd	Kmod	Comb.	SF
m	kN	kN	DaN/cmq	DaN/cmq			
1.42	0.01	0.96	0.751	11.172	0.6	1	14.88

Asta: 118 [1108 , 1109]

Sez. R: b = 0.12m h = 0.16m L = 1.42mCrit.Prog: Legno Arcareccio Verifica: Verificata

Verifica a flessione (§4.4.8.1.6, §4.4.8.1.1 - NTC 2008)

Parametri di verifica: km = 0.70 kh,y = 1.10 kh,z = 1.10 kcrit,m = 1.00 Leff = 1.28m

X	Myd	Mzd	σmyd	σmzd	fmyd	fmzd	Kmod	Comb.	SF			
m	kN*m	kN*m	DaN/cmq	DaN/cmq	DaN/cmq	DaN/cmq						

X	Myd	Mzd	σmyd	σmzd	fmyd	fmzd	Kmod	Comb.	SF
0.00	0.62	0.00	12.092	0.000	109.241	109.241	0.6	1	9.03

X	Tyd	Tzd	τd	fvd	Kmod	Comb.	SF
m	kN	kN	DaN/cmq	DaN/cmq			
0.00	0.03	1.06	0.829	11.172	0.6	1	13.48

Asta: 119 [1109 , 1106]

Sez. R: b = 0.12m h = 0.16m L = 1.42mCrit.Prog: Legno_Arcareccio Verifica: Verificata

Verifica a flessione (§4.4.8.1.6, §4.4.8.1.1 - NTC 2008)

Parametri di verifica: km = 0.70 kh,y = 1.10 kh,z = 1.10 kcrit,m = 1.00 Leff = 1.28m

Instabilità di trave: Trascurabile

X	Myd	Mzd	σmyd	σmzd	fmyd	fmzd	Kmod	Comb.	SF
m	kN*m	kN*m	DaN/cmq	DaN/cmq	DaN/cmq	DaN/cmq			
1.42	0.29	0.00	5.761	0.000	182.069	182.069	1	(12+13)-I-1	31.60

Verifica a taglio (§4.4.8.1.9 - NTC 2008)

X	Tyd	Tzd	τd	fvd	Kmod	Comb.	SF
m	kN	kN	DaN/cmq	DaN/cmq			
0.00	0.05	0.61	0.481	11.172	0.6	1	23.22

Asta: 120 [1114 , 1115]

Sez. R: b = 0.12m h = 0.16m L = 1.42mCrit.Prog: Legno Arcareccio Verifica: Verificata

Verifica a flessione (§4.4.8.1.6, §4.4.8.1.1 - NTC 2008)

Parametri di verifica: km = 0.70 kh,y = 1.10 kh,z = 1.10 kcrit,m = 1.00 Leff = 1.28m

Instabilità di trave: Trascurabile

X	Myd	Mzd	σmyd	σmzd	fmyd	fmzd	Kmod	Comb.	SF
m	kN*m	kN*m	DaN/cmq	DaN/cmq	DaN/cmq	DaN/cmq			
0.00	0.57	0.00	11.193	0.000	109.241	109.241	0.6	1	9.76

Verifica a taglio (§4.4.8.1.9 - NTC 2008)

X	Tyd	Tzd	τd	fvd	Kmod	Comb.	SF
m	kN	kN	DaN/cmq	DaN/cmq			
1.42	1.43	1.46	1.600	18.621	1	(12+13)-II-2	11.64

Asta: 121 [1115, 1116]

Sez. R: $b = 0.\overline{12m}$ h = 0.16m L = 1.43mCrit.Prog: Legno Arcareccio Verifica: Verificata

Verifica a flessione (§4.4.8.1.6, §4.4.8.1.1 - NTC 2008)

Parametri di verifica: km = 0.70 kh,y = 1.10 kh,z = 1.10 kcrit,m = 1.00 Leff = 1.28m

Instabilità di trave: Trascurabile

X	Myd	Mzd	σmyd	σmzd	fmyd	fmzd	Kmod	Comb.	SF
m	kN*m	kN*m	DaN/cmq	DaN/cmq	DaN/cmq	DaN/cmq			
1.43	0.62	0.00	12.189	0.000	109.241	109.241	0.6	1	8.96

Verifica a taglio (§4.4.8.1.9 - NTC 2008)

X	Tyd	Tzd	τd	fvd	Kmod	Comb.	SF
m	kN	kN	DaN/cmq	DaN/cmq			
1.43	0.00	1.06	0.827	11.172	0.6	1	13.51

Asta: 122 [1116 , 1117]

Sez. R: b = 0.12m h = 0.16m L = 1.42mCrit.Prog: Legno Arcareccio Verifica: Verificata

Verifica a flessione (§4.4.8.1.6, §4.4.8.1.1 - NTC 2008)

Parametri di verifica: km = 0.70 kh,y = 1.10 kh,z = 1.10 kcrit,m = 1.00 Leff = 1.28m

Instabilità di trave: Trascurabile

X	Myd	Mzd	σmyd	σmzd	fmyd	fmzd	Kmod	Comb.	SF
m	kN*m	kN*m	DaN/cmq	DaN/cmq	DaN/cmq	DaN/cmq			
0.00	0.64	0.00	12.418	0.000	109.241	109.241	0.6	1	8.80

Verifica a taglio (§4.4.8.1.9 - NTC 2008)

x	Tyd	Tzd	τd	fvd	Kmod	Comb.	SF
m	kN	kN	DaN/cmq	DaN/cmq			
0.00	0.03	1.04	0.812	11.172	0.6	1	13.76

Asta: 123 [1119 , 1120]

Sez. R: b = 0.12m h = 0.16m L = 1.42mCrit.Prog: Legno Arcareccio Verifica: Verificata

Verifica a flessione (§4.4.8.1.6, §4.4.8.1.1 - NTC 2008)

Parametri di verifica: km = 0.70 kh,y = 1.10 kh,z = 1.10 kcrit,m = 1.00 Leff = 1.28m

Instabilità di trave: Trascurabile

X	Myd	Mzd	σmyd	σmzd	fmyd	fmzd	Kmod	Comb.	SF
m	kN*m	kN*m	DaN/cmq	DaN/cmq	DaN/cmq	DaN/cmq			
1.42	0.30	0.00	5.812	0.000	182.069	182.069	1	(12+13)-II- 2	31.33

Verifica a taglio (§4.4.8.1.9 - NTC 2008)

X	Tyd	Tzd	τd	fvd	Kmod	Comb.	SF
m	kN	kN	DaN/cmq	DaN/cmq			
1.42	0.05	0.63	0.494	11.172	0.6	1	22.63

Asta: 124 [1120 , 1121]

Sez. R: b = 0.12m h = 0.16m L = 1.42mCrit.Prog: Legno_Arcareccio Verifica: Verificata

Verifica a flessione (§4.4.8.1.6, §4.4.8.1.1 - NTC 2008)

Parametri di verifica: km = 0.70 kh,y = 1.10 kh,z = 1.10 kcrit,m = 1.00 Leff = 1.28m

Instabilità di trave: Trascurabile

X	Myd	Mzd	σmyd	σmzd	fmyd	fmzd	Kmod	Comb.	SF
m	kN*m	kN*m	DaN/cmq	DaN/cmq	DaN/cmq	DaN/cmq			
1.42	0.66	0.00	12.802	0.000	109.241	109.241	0.6	1	8.53

Verifica a taglio (§4.4.8.1.9 - NTC 2008)

x	Tyd	Tzd	τd	fvd	Kmod	Comb.	SF
m	kN	kN	DaN/cmq	DaN/cmq			
1.42	0.03	1.08	0.842	11.172	0.6	1	13.26

Asta: 125 [1121 , 1122]

Sez. R: b = 0.12m h = 0.16m L = 1.42mCrit.Prog: Legno Arcareccio Verifica: Verificata

Verifica a flessione (§4.4.8.1.6, §4.4.8.1.1 - NTC 2008)

Parametri di verifica: km = 0.70

kh, y = 1.10

kh,z = 1.10

kcrit, m = 1.00

Leff = 1.28m

Instabilità di trave: Trascurabile

X	Myd	Mzd	σmyd	σmzd	fmyd	fmzd	Kmod	Comb.	SF
m	kN*m	kN*m	DaN/cmq	DaN/cmq	DaN/cmq	DaN/cmq			
0.00	0.63	0.00	12.236	0.000	109.241	109.241	0.6	1	8.93

Verifica a taglio (§4.4.8.1.9 - NTC 2008)

х	Tyd	Tzd	τd	fvd	Kmod	Comb.	SF
m	kN	kN	DaN/cmq	DaN/cmq			
0.00	0.00	1.06	0.831	11.172	0.6	1	13.45

Asta: 126 [1122 , 1123]

Sez. R: b = 0.12m h = 0.16m L = 1.42m $Crit.Prog: Legno_Arcareccio$ Verifica: Verificata

Verifica a flessione (§4.4.8.1.6, §4.4.8.1.1 - NTC 2008)

Parametri di verifica: km = 0.70 kh,y = 1.10 kh,z = 1.10 kcrit,m = 1.00 Leff = 1.28m

Instabilità di trave: Trascurabile

X	Myd	Mzd	σmyd	σmzd	fmyd	fmzd	Kmod	Comb.	SF
m	kN*m	kN*m	DaN/cmq	DaN/cmq	DaN/cmq	DaN/cmq			
1.42	0.55	0.00	10.769	0.000	109.241	109.241	0.6	1	10.14

Verifica a taglio (84 4 8 1 9 - NTC 2008)

X	Tyd	Tzd	τd	fvd	Kmod	Comb.	SF
m	kN	kN	DaN/cmq	DaN/cmq			
0.00	1.68	1.31	1.666	18.621	1	(12+13)-II-2	11.18

Asta: 71 [1071 , 1114]

Sez. R: b = 0.16m h = 0.32m L = 1.00m

Crit.Prog: Legno_Arcareccio Verifica: Verificata

Verifica a flessione (§4.4.8.1.6, §4.4.8.1.1 - NTC 2008)

Parametri di verifica: km = 0.70 kh,y = 1.06 kh,z = 1.10 kcrit,m = 1.00 leff = 0.90m

Instabilità di trave: Trascurabile

X	Myd	Mzd	σmyd	σmzd	fmyd	fmzd	Kmod	Comb.	SF
m	kN*m	kN*m	DaN/cmq	DaN/cmq	DaN/cmq	DaN/cmq			
0.00	1.10	0.00	4.030	0.000	105.753	109.241	0.6	1	26.24

Verifica a taglio (§4.4.8.1.9 - NTC 2008)

Х	Tyd	Tzd	τd	fvd	Kmod	Comb.	SF
m	kN	kN	DaN/cmq	DaN/cmq			
0.00	0.06	2.66	0.780	11.172	0.6	1	14.32

Asta: 72 [1077 , 111<u>5</u>]

Sez. R: $b = 0.\overline{16m}$ h = 0.32m L = 1.00mCrit.Prog: Legno Arcareccio Verifica: Verificata

Verifica a flessione (§4.4.8.1.6, §4.4.8.1.1 - NTC 2008)

Parametri di verifica: km = 0.70 kh,y = 1.06 kh,z = 1.10 kcrit,m = 1.00 Leff = 0.90m

X	Myd	Mzd	σmyd	σmzd	fmyd	fmzd	Kmod	Comb.	SF
m	kN*m	kN*m	DaN/cmq	DaN/cmq	DaN/cmq	DaN/cmq			
0.00	3.21	0.00	11.745	0.000	105.753	109.241	0.6	1	9.00

X	Tyd	Tzd	τd	fvd	Kmod	Comb.	SF
m	kN	kN	DaN/cmq	DaN/cmq			
0.00	0.01	5.07	1.485	11.172	0.6	1	7.52

Asta: 73 [1078 , 1116]

Sez. R: b = 0.16m h = 0.32m L = 1.00mCrit.Prog: Legno_Arcareccio Verifica: Verificata

Verifica a flessione (§4.4.8.1.6, §4.4.8.1.1 - NTC 2008)

Parametri di verifica: km = 0.70 kh,y = 1.06 kh,z = 1.10 kcrit,m = 1.00 Leff = 0.90m

Instabilità di trave: Trascurabile

X	Myd	Mzd	σmyd	σmzd	fmyd	fmzd	Kmod	Comb.	SF
m	kN*m	kN*m	DaN/cmq	DaN/cmq	DaN/cmq	DaN/cmq			
0.00	4.14	0.00	15.161	0.000	105.753	109.241	0.6	1	6.98

Verifica a taglio (§4.4.8.1.9 - NTC 2008)

renjied a tagi	10 (3 1.1.0.1.)	11 0 2000)					
X	Tyd	Tzd	τd	fvd	Kmod	Comb.	SF
m	kN	kN	DaN/cmq	DaN/cmq			
0.00	0.05	6.17	1.807	11.172	0.6	1	6.18

Asta: 74 [1079 , 1117]

Sez. R: b = 0.16m h = 0.32m L = 1.00mCrit.Prog: Legno Arcareccio Verifica: Verificata

Verifica a flessione (§4.4.8.1.6, §4.4.8.1.1 - NTC 2008)

Parametri di verifica: km = 0.70 kh,y = 1.06 kh,z = 1.10 kcrit,m = 1.00 Leff = 0.90m

Instabilità di trave: Trascurabile

X	Myd	Mzd	σmyd	σmzd	fmyd	fmzd	Kmod	Comb.	SF
m	kN*m	kN*m	DaN/cmq	DaN/cmq	DaN/cmq	DaN/cmq			
0.00	2.41	0.00	8.831	0.000	105.753	109.241	0.6	1	11.98

Verifica a taglio (§4.4.8.1.9 - NTC 2008)

Х	Tyd	Tzd	τd	fvd	Kmod	Comb.	SF
m	kN	kN	DaN/cmq	DaN/cmq			
0.00	0.09	4.35	1.275	11.172	0.6	1	8.76

Asta: 75 [1073 , 1119]

Sez. R: b = 0.16m $\bar{h} = 0.32m$ L = 1.00mCrit.Prog: Legno_Arcareccio Verifica: Verificata

Verifica a flessione (§4.4.8.1.6, §4.4.8.1.1 - NTC 2008)

Parametri di verifica: km = 0.70 kh,y = 1.06 kh,z = 1.10 kcrit,m = 1.00 Leff = 0.90m

Instabilità di trave: Trascurabile

X	Myd	Mzd	σmyd	σmzd	fmyd	fmzd	Kmod	Comb.	SF
m	kN*m	kN*m	DaN/cmq	DaN/cmq	DaN/cmq	DaN/cmq			
0.00	2.13	0.00	7.816	0.000	105.753	109.241	0.6	1	13.53

Verifica a taglio (§4.4.8.1.9 - NTC 2008)

X	Tyd	Tzd	τd	fvd	Kmod	Comb.	SF
m	kN	kN	DaN/cmq	DaN/cmq			
0.00	0.01	4.34	1.272	11.172	0.6	1	8.78

Asta: 76 [1080 , 1120]

Sez. R: b = 0.16m h = 0.32m L = 1.00mCrit.Prog: Legno Arcareccio Verifica: Verificata Verifica a flessione (§4.4.8.1.6, §4.4.8.1.1 - NTC 2008)

Parametri di verifica: km = 0.70

kh, y = 1.06

kh, z = 1.10

kcrit, m = 1.00

Leff = 0.90m

Instabilità di trave: Trascurabile

X	Myd	Mzd	σmyd	σmzd	fmyd	fmzd	Kmod	Comb.	SF
m	kN*m	kN*m	DaN/cmq	DaN/cmq	DaN/cmq	DaN/cmq			
0.00	2.63	0.00	9.643	0.000	105.753	109.241	0.6	1	10.97

Verifica a taglio (§4.4.8.1.9 - NTC 2008)

X	Tyd	Tzd	τd	fvd	Kmod	Comb.	SF
m	kN	kN	DaN/cmq	DaN/cmq			
0.00	0.10	4.59	1.346	11.172	0.6	1	8.30

Asta: 77 [1081 , 1121]

Sez. R: b = 0.16m

h = 0.32m

L = 1.00m

Crit.Prog: Legno Arcareccio

Verifica: Verificata

Verifica a flessione (§4.4.8.1.6, §4.4.8.1.1 - NTC 2008)

Parametri di verifica: km = 0.70

kh, y = 1.06 kh, z = 1.10

kcrit, m = 1.00

Leff = 0.90m

Instabilità di trave: Trascurabile

X	Myd	Mzd	σmyd	σmzd	fmyd	fmzd	Kmod	Comb.	SF
m	kN*m	kN*m	DaN/cmq	DaN/cmq	DaN/cmq	DaN/cmq			
0.00	4.19	0.00	15.348	0.000	105.753	109.241	0.6	1	6.89

Verifica a taglio (§4.4.8.1.9 - NTC 2008)

- rentited a tag	10 (3 1.1.0.1.)	<u> 11 C 2000/</u>					
X	Tyd	Tzd	τd	fvd	Kmod	Comb.	SF
m	kN	kN	DaN/cmq	DaN/cmq			
0.00	0.05	6.21	1.820	11.172	0.6	1	6.14

Asta: 78 [1082 , 1122]

Sez. R: b = 0.16m

h = 0.32m

L = 1.00m

Crit.Prog: Legno_Arcareccio

Verifica: Verificata

Verifica a flessione (§4.4.8.1.6, §4.4.8.1.1 - NTC 2008)

Parametri di verifica: km = 0.70

kh, y = 1.06

kh, z = 1.10 kcrit, m = 1.00

kcrit, m = 1.00

Leff = 0.90m

Leff = 1.04m

Instabilità di trave: Trascurabile

X	Myd	Mzd	σmyd	σmzd	fmyd	fmzd	Kmod	Comb.	SF
m	kN*m	kN*m	DaN/cmq	DaN/cmq	DaN/cmq	DaN/cmq			
0.00	3.20	0.00	11.727	0.000	105.753	109.241	0.6	1	9.02

Verifica a taglio (§4.4.8.1.9 - NTC 2008)

Territora a tagi	10 (3 1.1.0.1.)	<u> </u>					
x	Tyd	Tzd	τd	fvd	Kmod	Comb.	SF
m	kN	kN	DaN/cmq	DaN/cmq			
0.00	0.03	5.07	1.484	11.172	0.6	1	7.53

Asta: 79 [1072 , 1123]

Sez. R: b = 0.16m h = 0.32m

L = 1.16m

Crit.Prog: Legno Arcareccio Verifica: Verificata

Verifica a flessione (§4.4.8.1.6, §4.4.8.1.1 - NTC 2008)

Parametri di verifica: km = 0.70 kh,y = 1.06 kh,z = 1.10

msiaonia (at trave. I'm	curuone							
X	Myd	Mzd	σmyd	σmzd	fmyd	fmzd	Kmod	Comb.	SF
m	kN*m	kN*m	DaN/cmq	DaN/cmq	DaN/cmq	DaN/cmq			
0.00	1 24	0.00	4 533	0.000	105 753	109 241	0.6	1	23 33

x	Tyd	Tzd	τd	fvd	Kmod	Comb.	SF
m	kN	kN	DaN/cmq	DaN/cmq			
0.00	0.06	2.55	0.747	11.172	0.6	1	14.95

Asta: 80 [1092, 1076]

Sez. R: b = 0.16m h = 0.32m L = 4.56mCrit.Prog: Legno_Arcareccio Verifica: Verificata

Verifica a flessione (§4.4.8.1.6, §4.4.8.1.1 - NTC 2008)

Parametri di verifica: km = 0.70 kh,y = 1.06 kh,z = 1.10 kcrit,m = 1.00 Leff = 4.10m

Instabilità di trave: Trascurabile

X	Myd	Mzd	σmyd	σmzd	fmyd	fmzd	Kmod	Comb.	SF
m	kN*m	kN*m	DaN/cmq	DaN/cmq	DaN/cmq	DaN/cmq			
0.00	9.13	0.00	33.424	0.000	105.753	109.241	0.6	1	3.16

Verifica a taglio (§4.4.8.1.9 - NTC 2008)

X	Tyd	Tzd	τd	fvd	Kmod	Comb.	SF
m	kN	kN	DaN/cmq	DaN/cmq			
0.00	0.00	10.76	3.153	11.172	0.6	1	3.54

Asta: 82 [1093 , 1071]

Sez. R: b = 0.16m h = 0.32m L = 4.46mCrit.Prog: Legno_Arcareccio Verifica: Verificata

Verifica a flessione (§4.4.8.1.6, §4.4.8.1.1 - NTC 2008)

Parametri di verifica: km = 0.70 kh,y = 1.06 kh,z = 1.10 kcrit,m = 1.00 Leff = 4.01m

Instabilità di trave: Trascurabile

X	Myd	Mzd	σmyd	σmzd	fmyd	fmzd	Kmod	Comb.	SF
m	kN*m	kN*m	DaN/cmq	DaN/cmq	DaN/cmq	DaN/cmq			
0.00	10.15	0.00	37.186	0.000	176.256	182.069	1	(12+13)-II- 1	4.74

Verifica a taglio (§4.4.8.1.9 - NTC 2008)

X	Tyd	Tzd	τd	fvd	Kmod	Comb.	SF
m	kN	kN	DaN/cmq	DaN/cmq			
0.00	0.01	5.91	1.731	11.172	0.6	1	6.46

Asta: 83 [1079 , 1073]

Sez. R: b = 0.16m h = 0.32m L = 1.42mCrit.Prog: Legno_Arcareccio Verifica: Verificata

Verifica a flessione (§4.4.8.1.6, §4.4.8.1.1 - NTC 2008)

Parametri di verifica: km = 0.70 kh,y = 1.06 kh,z = 1.10 kcrit,m = 1.00 Leff = 1.28m

Instabilità di trave: Trascurabile

X	Myd	Mzd	σmyd	σmzd	fmyd	fmzd	Kmod	Comb.	SF
m	kN*m	kN*m	DaN/cmq	DaN/cmq	DaN/cmq	DaN/cmq			
1.42	8.10	0.00	29.661	0.000	176.256	182.069	1	(12+13)-I-1	5.94

Verifica a taglio (§4.4.8.1.9 - NTC 2008)

	X	Tyd	Tzd	τd	fvd	Kmod	Comb.	SF
	m	kN	kN	DaN/cmq	DaN/cmq			
1	.42	0.10	6.23	1.825	11.172	0.6	1	6.12

Asta: 84 [1098 , 1092]

Sez. R: b = 0.20m h = 0.40m L = 1.42mCrit.Prog: Legno_Arcareccio Verifica: Verificata

Verifica a flessione (§4.4.8.1.6, §4.4.8.1.1 - NTC 2008)

Parametri di verifica: km = 0.70 kh,y = 1.04 kh,z = 1.10 kcrit,m = 1.00 Leff = 1.28m

Instabilità di trave: Trascurabile

X	Myd	Mzd	σmyd	σmzd	fmyd	fmzd	Kmod	Comb.	SF
m	kN*m	kN*m	DaN/cmq	DaN/cmq	DaN/cmq	DaN/cmq			
1.42	48.29	0.00	90.538	0.000	103.420	109.241	0.6	1	1.14

Verifica a taglio (§4.4.8.1.9 - NTC 2008)

X	Tyd	Tzd	τd	fvd	Kmod	Comb.	SF
m	kN	kN	DaN/cmq	DaN/cmq			
1.42	0.27	38.14	7.152	11.172	0.6	1	1.56

Asta: 85 [1086, 1076]

Sez. R: b = 0.16m h = 0.32m L = 1.42mCrit.Prog: Legno Arcareccio Verifica: Verificata

Verifica a flessione (§4.4.8.1.6, §4.4.8.1.1 - NTC 2008)

Parametri di verifica: km = 0.70 kh,y = 1.06 kh,z = 1.10 kcrit,m = 1.00 Leff = 1.28m

Instabilità di trave: Trascurabile

X	Myd	Mzd	σmyd	σmzd	fmyd	fmzd	Kmod	Comb.	SF
m	kN*m	kN*m	DaN/cmq	DaN/cmq	DaN/cmq	DaN/cmq			
1.42	9.92	0.00	36.326	0.000	176.256	182.069	1	(12+13)-I-1	4.85

Verifica a taglio (§4.4.8.1.9 - NTC 2008)

X	Tyd	Tzd	τd	fvd	Kmod	Comb.	SF
m	kN	kN	DaN/cmq	DaN/cmq			
1.42	0.05	6.34	1.858	11.172	0.6	1	6.01

Asta: 127 [1117 , 1119]

Sez. R: b = 0.12m h = 0.16m L = 1.42mCrit.Prog: Legno_Arcareccio Verifica: Verificata

Verifica a flessione (§4.4.8.1.6, §4.4.8.1.1 - NTC 2008)

Parametri di verifica: km = 0.70 kh,y = 1.10 kh,z = 1.10 kcrit,m = 1.00 Leff = 1.28m

Instabilità di trave: Trascurabile

X	Myd	Mzd	σmyd	σmzd	fmyd	fmzd	Kmod	Comb.	SF
m	kN*m	kN*m	DaN/cmq	DaN/cmq	DaN/cmq	DaN/cmq			
0.00	0.32	0.00	6.178	0.000	182.069	182.069	1	(12+13)-II- 2	29.47

Verifica a taglio (§4.4.8.1.9 - NTC 2008)

X	Tyd	Tzd	τd	fvd	Kmod	Comb.	SF
m	kN	kN	DaN/cmq	DaN/cmq			
0.00	0.05	0.35	0.275	11.172	0.6	1	40.58

Asta: 128 [1110 , 1106]

Sez. R: b = 0.12m h = 0.16m L = 1.42mCrit.Prog: Legno Arcareccio Verifica: Verificata

Verifica a flessione (§4.4.8.1.6, §4.4.8.1.1 - NTC 2008)

Parametri di verifica: km = 0.70 kh,y = 1.10 kh,z = 1.10 kcrit,m = 1.00 Leff = 1.28m

X	Myd	Mzd	σmyd	σmzd	fmyd	fmzd	Kmod	Comb.	SF
m	kN*m	kN*m	DaN/cmq	DaN/cmq	DaN/cmq	DaN/cmq			
1.42	0.36	0.00	7.088	0.000	182.069	182.069	1	(12+13)-I-3	25.69

x	Tyd	Tzd	τd	fvd	Kmod	Comb.	SF
m	kN	kN	DaN/cmq	DaN/cmq			
0.00	0.05	0.35	0.279	11.172	0.6	1	40.03

Asta: 88 [1072 , 1094]

Sez. R: b = 0.16m h = 0.32m L = 4.46mCrit.Prog: Legno_Arcareccio Verifica: Verificata

Verifica a flessione (§4.4.8.1.6, §4.4.8.1.1 - NTC 2008)

Parametri di verifica: km = 0.70 kh,y = 1.06 kh,z = 1.10 kcrit,m = 1.00 Leff = 4.01m

Instabilità di trave: Trascurabile

X	Myd	Mzd	σmyd	σmzd	fmyd	fmzd	Kmod	Comb.	SF
m	kN*m	kN*m	DaN/cmq	DaN/cmq	DaN/cmq	DaN/cmq			
0.00	9.22	0.00	33.748	0.000	176.256	182.069	1	(12+13)-II- 2	5.22

Verifica a taglio (§4.4.8.1.9 - NTC 2008)

x	Tyd	Tzd	τd	fvd	Kmod	Comb.	SF
m	kN	kN	DaN/cmq	DaN/cmq			
4.46	0.03	5.35	1.568	11.172	0.6	1	7.13

Asta: 89 [0, 1075]

Sez. R: b = 0.16m h = 0.32m L = 2.50mCrit.Prog: Legno Arcareccio Verifica: Verificata

Verifica a flessione (§4.4.8.1.6, §4.4.8.1.1 - NTC 2008)

Parametri di verifica: km = 0.70 kh,y = 1.06 kh,z = 1.10 kcrit,m = 1.00 Leff = 2.25m

Instabilità di trave: Trascurabile

X	Myd	Mzd	σmyd	σmzd	fmyd	fmzd	Kmod	Comb.	SF
m	kN*m	kN*m	DaN/cmq	DaN/cmq	DaN/cmq	DaN/cmq			
0.00	6.08	0.00	22.267	0.000	176.256	182.069	1	(12+13)-II- 2	7.92

Verifica a taglio (§4.4.8.1.9 - NTC 2008)

r crijica a iag	110 (34.4.0.1.)	<u> </u>					
X	Tyd	Tzd	τd	fvd	Kmod	Comb.	SF
m	kN	kN	DaN/cmq	DaN/cmq			
0.00	0.01	5.57	1.632	11.172	0.6	1	6.85

Asta: 93 [1075 , 1175]

Sez. R: b = 0.16m h = 0.32m L = 1.45mCrit.Prog: Legno_Arcareccio Verifica: Verificata

Verifica a flessione (§4.4.8.1.6, §4.4.8.1.1 - NTC 2008)

Parametri di verifica: km = 0.70 kh,y = 1.06 kh,z = 1.10 kcrit,m = 1.00 leff = 1.30m

Instabilità di trave: Trascurabile

X	Myd	Mzd	σmyd	σmzd	fmyd	fmzd	Kmod	Comb.	SF
m	kN*m	kN*m	DaN/cmq	DaN/cmq	DaN/cmq	DaN/cmq			
0.00	8.86	0.00	32.440	0.000	176.256	182.069	1	(12+13)-I-3	5.43

Verifica a taglio (§4.4.8.1.9 - NTC 2008)

x Tyd Tzd td fvd Kmod Comb. SF

X	Tyd	Tzd	τd	fvd	Kmod	Comb.	SF
m	kN	kN	DaN/cmq	DaN/cmq			
0.00	1.39	8.78	2.603	18.621	1	(12+13)-I-3	7.15

Asta: 94 [1175, 100]

Sez. R: b = 0.16m h = 0.32m L = 2.50mCrit.Prog: Legno_Arcareccio Verifica: Verificata

Verifica a flessione (§4.4.8.1.6, §4.4.8.1.1 - NTC 2008)

Parametri di verifica: km = 0.70 kh,y = 1.06 kh,z = 1.10 kcrit,m = 1.00 Leff = 2.25m

Instabilità di trave: Trascurabile

X	Myd	Mzd	σmyd	σmzd	fmyd	fmzd	Kmod	Comb.	SF
m	kN*m	kN*m	DaN/cmq	DaN/cmq	DaN/cmq	DaN/cmq			
0.00	8.02	0.00	29.365	0.000	176.256	182.069	1	(12+13)-II- 1	6.00

Verifica a taglio (§4.4.8.1.9 - NTC 2008)

X	Tyd	Tzd	τd	fvd	Kmod	Comb.	SF
m	kN	kN	DaN/cmq	DaN/cmq			
0.00	0.81	8.61	2.533	18.621	1	(12+13)-II-1	7.35

Asta: 95 [100, 0]

Sez. R: b = 0.16m h = 0.32m L = 1.45mCrit.Prog: Legno_Arcareccio Verifica: Verificata

Verifica a flessione (§4.4.8.1.6, §4.4.8.1.1 - NTC 2008)

Parametri di verifica: km = 0.70 kh,y = 1.06 kh,z = 1.10 kcrit,m = 1.00 Leff = 1.30m

Instabilità di trave: Trascurabile

X	Myd	Mzd	σmyd	σmzd	fmyd	fmzd	Kmod	Comb.	SF
m	kN*m	kN*m	DaN/cmq	DaN/cmq	DaN/cmq	DaN/cmq			
1.45	6.28	0.00	22.998	0.000	176.256	182.069	1	(12+13)-I-3	7.66

Verifica a taglio (§4.4.8.1.9 - NTC 2008)

X	Tyd	Tzd	τd	fvd	Kmod	Comb.	SF
m	kN	kN	DaN/cmq	DaN/cmq			
1.45	1.64	7.65	2.292	18.621	1	(12+13)-I-3	8.13

Asta: 96 [1175 , 1275]

Sez. R: b = 0.16m h = 0.32m L = 1.00mCrit.Prog: Legno_Arcareccio Verifica: Verificata

Verifica a flessione (§4.4.8.1.6, §4.4.8.1.1 - NTC 2008)

Parametri di verifica: km = 0.70 kh,y = 1.06 kh,z = 1.10 kcrit,m = 1.00 Leff = 0.90m

Instabilità di trave: Trascurabile

x	Myd	Mzd	σmyd	σmzd	fmyd	fmzd	Kmod	Comb.	SF
m	kN*m	kN*m	DaN/cmq	DaN/cmq	DaN/cmq	DaN/cmq			
0.00	1.98	0.00	7.237	0.000	105.753	109.241	0.6	1	14.61

Verifica a taglio (§4.4.8.1.9 - NTC 2008)

X	Tyd	Tzd	τd	fvd	Kmod	Comb.	SF
m	kN	kN	DaN/cmq	DaN/cmq			
0.00	0.04	3.55	1.039	11.172	0.6	1	10.75

Asta: 131 [1275 , 1105]

 $\overline{Sez. \ R: b = 0.12m} \quad h = 0.16m \quad L = 1.45m$

Crit.Prog: Legno_Arcareccio Verifica: Verificata

Verifica a flessione (§4.4.8.1.6, §4.4.8.1.1 - NTC 2008)

Parametri di verifica: km = 0.70 kh,y = 1.10 kh,z = 1.10 kcrit,m = 1.00 Leff = 1.30m

Instabilità di trave: Trascurabile

	X	Myd	Mzd	σmyd	σmzd	fmyd	fmzd	Kmod	Comb.	SF
Ī	m	kN*m	kN*m	DaN/cmq	DaN/cmq	DaN/cmq	DaN/cmq			
	0.00	0.29	0.00	5.680	0.000	182.069	182.069	1	(12+13)-II- 2	32.06

Verifica a taglio (§4.4.8.1.9 - NTC 2008)

X	Tyd	Tzd	τd	fvd	Kmod	Comb.	SF
m	kN	kN	DaN/cmq	DaN/cmq			
0.00	0.65	0.44	0.613	18.621	1	(12+13)-I-1	30.40

VERIFICHE STATO LIMITE DI ESERCIZIO

Verifica dei Muri (Stati limite esercizio)

Scenario di calcolo : Set_NT_SLV_SLD_A2_STR/GEO

Muro [Platea]:1 - Nodi: [1067 - 1064 - 1065 - 1066]

Pann=160 Spess.= 40 cm Terreno: santa maria scuola Criterio CLS_Muri Materiale: Rck30

Armatura a maglia doppia

Combinazione Rara: σ ca[DaN/cma]=149.400 σ fa[DaN/cma]=3600.000

		tara: ocali	DaN/cmqj=			in/cmqj				ı				
P.	Nx	Ny	Nxy	Mx	My	Mxy	Afx	Afy	σcmax	σfmax	Cbc	Cbf	Ver	Cs
	kg/mq	kg/mq	kg/mq	kg	kg	kg	m^2/m	m^2/m	DaN/cmq	DaN/cmq				
1	0	0	0	-7	69	12	0.00	0.00	-0.584	40.843	19	21	Si	88.1
2	0	0	0	-8	59	-11	0.00	0.00	-0.501	34.533	18	21	Si	>100
3	0	0	0	-4	25	-23	0.00	0.00	-0.319	22.574	18	21	Si	>100
4	0	0	0	-3	14	-20	0.00	0.00	-0.224	16.707	18	21	Si	>100
5	0	0	0	-9	35	-18	0.00	0.00	-0.337	25.075	18	21	Si	>100
6	0	0	0	-16	79	-28	0.00	0.00	-0.670	47.695	18	21	Si	75.5
7	0	0	0	-13	73	-44	0.00	0.00	-0.755	53.127	18	21	Si	67.8
8	0	0	0	2	22	-30	0.00	0.00	-0.363	25.364	18	21	Si	>100
9	0	0	0	-100	-17	-45	0.00	0.00	-0.995	71.236	18	21	Si	50.5
10	0	0	0	-196	-50	-42	0.00	0.00	-1.655	116.917	18	21	Si	30.8
11	0	0	0	-160	-48	-34	0.00	0.00	-1.357	96.931	19	21	Si	37.1
12	0	0	0	62	-10	-56	0.00	0.00	-0.777	53.777	18	21	Si	66.9
13	0	0	0	-93	-66	-30	0.00	0.00	-0.945	65.529	18	21	Si	54.9
14	0	0	0	-240	-107	17	0.00	0.00	-2.020	143.203	19	21	Si	25.1
15	0	0	0	94	-1	22	0.00	0.00	-0.790	55.233	18	21	Si	65.2
16	0	0	0	-16	-22	13	0.00	0.00	-0.267	18.799	18	21	Si	>100
17	0	0	0	-113	-49	-8	0.00	0.00	-0.952	67.734	19	21	Si	53.1
18	0	0	0	89	-5	-34	0.00	0.00	-0.799	55.298	18	21	Si	65.1
19	0	0	0	-158	-75	-18	0.00	0.00	-1.329	92.951	18	21	Si	38.7
20	0	0	0	-196	-92	24	0.00	0.00	-1.655	117.484	19	21	Si	30.6
21	0	0	0	128	-4	45	0.00	0.00	-1.130	77.653	18	21	Si	46.4
22	0	0	0	41	-25	26	0.00	0.00	-0.401	32.192	19	21	Si	>100
23	0	0	0	-36	-15	27	0.00	0.00	-0.460	32.433	18	21	Si	>100
24	0	0	0	-16	166	47	0.00	0.00	-1.401	100.870	18	21	Si	35.7
25	0	0	0	10	309	76	0.00	0.00	-2.605	180.484	18	21	Si	19.9
26	0	0	0	-16	195	71	0.00	0.00	-1.721	119.427	19	21	Si	30.1
27	0	0	0	-116	-197	28	0.00	0.00	-1.688	118.617	18	21	Si	30.3

P.	Nx	Ny	Nxy	Mx	My	Mxy	Afx	Afy	σcmax	σfmax	Cbc	Cbf	Ver	Cs
28	0	0	0	-108	-186	-29	0.00	0.00	-1.612	113.932	19	21	Si	31.6
29	0	0	0	-11	170	-75	0.00	0.00	-1.596	110.190	19	21	Si	32.7
30	0	0	0	9	234	-77	0.00	0.00	-2.063	144.765	19	21	Si	24.9
31	0	0	0	-16	80	-49	0.00	0.00	-0.828	62.469	19	21	Si	57.6
32	0	0	0	-22 50	-25 -31	-21 -34	0.00	0.00	-0.357 -0.497	26.801 36.294	19 18	21	Si Si	>100
34	0	0	0	100	-27	-34	0.00	0.00	-0.497	59.162	19	21	Si	60.8
35	0	0	0	-178	-100	-7	0.00	0.00	-1.500	104.415	19	21	Si	34.5
36	0	0	0	-147	-93	5	0.00	0.00	-1.237	87.418	18	21	Si	41.2
37	0	0	0	51	-31	27	0.00	0.00	-0.452	33.473	19	21	Si	>100
38	0	0	0	-93	-13	33	0.00	0.00	-0.857	60.545	19	21	Si	59.5
39	0	0	0	-44	-17	-35	0.00	0.00	-0.570	40.266	18	21	Si	89.4
40	0	0	0	-2	-24	6	0.00	0.00	-0.201	14.027	19	21	Si	>100
41	0	0	0	-288	-35	36	0.00	0.00	-2.426	167.644	19	21	Si	21.5
42	0	0	0	-113	-52	9	0.00	0.00	-0.956	67.358	18	21	Si	53.4
43	0	0	0	27	-35	74	0.00	0.00	-0.705	48.924	18	21	Si	73.6
44	0	0	0	-52 -34	-13	73 35	0.00	0.00	-0.889	62.582 35.527	19	21	Si Si	57.5
45	0	0	0	-34 29	-13 5	29	0.00	0.00	-0.498 -0.405	29.164	19 19	21	Si Si	>100
47	0	0	0	13	16	17	0.00	0.00	-0.403	17.581	19	21	Si	>100
48	0	0	0	3	48	23	0.00	0.00	-0.479	33.845	19	21	Si	>100
49	0	0	0	-49	-2	-0	0.00	0.00	-0.413	28.822	19	21	Si	>100
50	0	0	0	-243	-68	14	0.00	0.00	-2.051	141.213	19	21	Si	25.5
51	0	0	0	-82	42	2	0.00	0.00	-0.688	47.511	19	21	Si	75.8
52	0	0	0	-204	62	15	0.00	0.00	-1.723	119.049	19	21	Si	30.2
53	0	0	0	-172	133	-26	0.00	0.00	-1.447	99.939	18	21	Si	36.0
54	0	0	0	-174	61	-54	0.00	0.00	-1.466	102.430	18	21	Si	35.1
55	0	0	0	-90	98	-22	0.00	0.00	-0.830	57.942	18	21	Si	62.1
56	0	0	0	-97	64	-53	0.00	0.00	-0.866	60.154	18	21	Si	59.8
57	0	0	0	60	204	150	0.00	0.00	-2.507	172.391	18	21	Si	20.9
58 59	0	0	0	216 156	141 230	95 64	0.00	0.00	-2.353 -2.248	161.772 155.305	18 18	21	Si Si	22.3
60	0	0	0	17	248	114	0.00	0.00	-2.438	168.613	18	21	Si	21.4
61	0	0	0	68	298	88	0.00	0.00	-2.668	184.221	18	21	Si	19.5
62	0	0	0	51	130	66	0.00	0.00	-1.410	98.101	18	21	Si	36.7
63	0	0	0	-2	270	119	0.00	0.00	-2.573	177.642	18	21	Si	20.3
64	0	0	0	-163	2	35	0.00	0.00	-1.375	99.205	19	21	Si	36.3
65	0	0	0	81	273	60	0.00	0.00	-2.340	162.127	18	21	Si	22.2
66	0	0	0	-38	234	58	0.00	0.00	-1.970	136.409	18	21	Si	26.4
67	0	0	0	-93	126	-31	0.00	0.00	-1.064	75.580	18	21	Si	47.6
68	0	0	0	-118	-25	10	0.00		-0.995					52.0
70	0	0	0	179 116	78 200	35 -9	0.00	0.00 0.00	-1.546	106.778	18 18	21	Si Si	33.7
71	0	0	0	-26	197	-45	0.00	0.00	-1.688 -1.660	116.827 115.319	18	21	Si	30.8
72	0	0	0	41	153	- 4 3	0.00	0.00	-1.738	119.716	18	21	Si	30.1
73	0	0	0	74	245	-33	0.00	0.00	-2.063	142.785	18	21	Si	25.2
74	0	0	0	-85	21	-43	0.00	0.00	-0.804	57.243	19	21	Si	62.9
75	0	0	0	-127	69	-35	0.00	0.00	-1.068	76.305	19	21	Si	47.2
76	0	0	0	39	127	-52	0.00	0.00	-1.264	87.557	18	21	Si	41.1
77	0	0	0	-87	168	-39	0.00	0.00	-1.414	97.117	18	21	Si	37.1
78	0	0	0	-190	-5	-2	0.00	0.00	-1.604	111.024	19	21	Si	32.4
79	0	0	0	-34	20	-35	0.00	0.00	-0.427	29.825	19	21	Si	>100
80	0	0	0	-85	153	22	0.00	0.00	-1.285	88.319	19	21	Si	40.8
81	0	0	0	-38 12	93 41	-13 46	0.00	0.00	-0.781 -0.619	53.758 44.014	18 19	21	Si Si	67.0 81.8
82	0	0	0	-20	94	33	0.00	0.00	-0.619	55.698	19	21	Si Si	64.6
84	0	0	0	-20 -48	128	70	0.00	0.00	-1.217	84.692	19	21	Si	42.5
85	0	0	0	-50	-4	70	0.00	0.00	-0.841	58.109	18	21	Si	62.0
86	0	0	0	65	-47	-55	0.00	0.00	-0.714	49.230	18	21	Si	73.1
87	0	0	0	-49	224	-43	0.00	0.00	-1.889	131.243	19	21	Si	27.4
88	0	0	0	34	244	-94	0.00	0.00	-2.299	157.981	19	21	Si	22.8
89	0	0	0	28	291	-109	0.00	0.00	-2.694	185.667	19	21	Si	19.4
90	0	0	0	-176	3	-44	0.00	0.00	-1.481	103.467	19	21	Si	34.8
91	0	0	0	-303	-245	-3	0.00	0.00	-2.556	179.537	19	21	Si	20.1
92	0	0	0	27	-45	-18	0.00	0.00	-0.378	26.586	18	21	Si	>100

P.	Nx	Ny	Nxy	Mx	My	Mxy	Afx	Afy	σcmax	σfmax	Cbc	Cbf	Ver	Cs
93	0	0	0	7	101	-69	0.00	0.00	-1.152	80.476	19	21	Si	44.7
94	0	0	0	76	193	38	0.00	0.00	-1.657	114.838	19	21	Si	31.3
95	0	0	0	178	93	50	0.00	0.00	-1.689	115.926	19	21	Si	31.1
96	0	0	0	-80	37	73	0.00	0.00	-0.966	67.863	19	21	Si	53.0
97	0	0	0	-18 -22	188 119	80 64	0.00	0.00	-1.737 -1.179	119.971 83.391	19 19	21	Si Si	30.0 43.2
98	0	0	0	42	119	75	0.00	0.00	-0.852	58.658	19	21	Si	61.4
100	0	0	0	-75	-42	79	0.00	0.00	-1.140	79.339	18	21	Si	45.4
101	0	0	0	-179	-24	73	0.00	0.00	-1.716	119.310	18	21	Si	30.2
102	0	0	0	-13	10	116	0.00	0.00	-0.910	63.202	19	21	Si	57.0
103	0	0	0	-196	-208	58	0.00	0.00	-2.147	148.799	18	21	Si	24.2
104	0	0	0	-26	173	73	0.00	0.00	-1.569	109.402	19	21	Si	32.9
105	0	0	0	240	51	38	0.00	0.00	-2.019	138.642	19	21	Si	26.0
106	0	0	0	-8	-88	69	0.00	0.00	-1.080	75.705	18	21	Si	47.6
107	0	0	0	169	233	69	0.00	0.00	-2.332	160.362	18	21	Si	22.4
108	0	0	0	49	223	106	0.00	0.00	-2.292	157.484	19	21	Si	22.9
109	0	0	0	64	138	44	0.00	0.00	-1.325	93.109	18	21	Si	38.7
110	0	0	0	73	287	74	0.00	0.00	-2.508	173.577	18	21	Si	20.7
111	0	0	0	115	116	77	0.00	0.00	-1.537	106.539	18	21	Si	33.8
112	0	0	0	110	272	75	0.00	0.00	-2.500	172.700	18	21	Si	20.8
113	-0	0	-0	-480	-202	5	0.00	0.00	-4.042	278.421	18	21	Si	12.9
114	0	0	0	-261	215	149	0.00	0.00	-2.282	157.087	18	21	Si	22.9
115	0	0	0	-226	319	-48	0.00	0.00	-2.692	185.070	18	21	Si	19.5
116	0	0	0	-74 -7	331 312	-16 6	0.00	0.00	-2.787 -2.626	192.706 181.525	18 18	21	Si Si	18.7 19.8
118	0	0	0	-70	391	18	0.00	0.00	-3.294	227.256	18	21	Si	15.8
119	0	0	0	-46	140	10	0.00	0.00	-1.182	82.788	18	21	Si	43.5
120	0	0	0	-61	298	-4	0.00	0.00	-2.513	173.795	18	21	Si	20.7
121	0	0	0	-82	378	-40	0.00	0.00	-3.187	219.606	18	21	Si	16.4
122	0	0	0	-100	72	-3	0.00	0.00	-0.847	61.310	19	21	Si	58.7
123	0	0	0	-21	303	-138	0.00	0.00	-2.883	198.207	18	21	Si	18.2
124	0	0	-0	-207	-161	-72	0.00	0.00	-2.173	149.227	19	21	Si	24.1
125	0	0	0	140	272	-54	0.00	0.00	-2.407	165.499	18	21	Si	21.8
126	0	0	0	258	55	-41	0.00	0.00	-2.177	149.490	18	21	Si	24.1
127	0	0	0	-106	60	56	0.00	0.00	-0.957	68.956	19	21	Si	52.2
128	0	0	0	21	298	10	0.00	0.00	-2.514	173.803	18	21	Si	20.7
129	0	0	0	-90	123	-58	0.00	0.00	-1.040	73.089	18	21	Si	49.3
130	0	0	0	18	258	-20	0.00	0.00	-2.173	150.395	18	21	Si	23.9
131	0	0	0	34	211	-72	0.00	0.00	-1.924	133.379	18	21	Si	27.0
132	0	0	0	68	123	-29	0.00	0.00	-1.137	79.297	18	21	Si	45.4
133	0	0	0	5	328	-78	0.00	0.00	-2.766				Si	18.9
134	0	0	0	-9 224	-89	-76	0.00	0.00	-1.133	78.651	19	21	Si	45.8
135	0	0	0	234 51	49 187	-48 -106	0.00	0.00	-1.968 -2.062	135.918 143.021	19 19	21	Si Si	26.5 25.2
130	0	0	0	158	190	-72	0.00	0.00	-2.062	143.021	19	21	Si	25.2
138	0	0	0	101	186	-72 -79	0.00	0.00	-1.964	137.343	19	21	Si	26.2
139	0	0	0	107	39	-65	0.00	0.00	-1.230	84.471	18	21	Si	42.6
140	0	0	0	69	208	-74	0.00	0.00	-2.004	140.868	19	21	Si	25.6
141	0	0	0	56	57	-47	0.00	0.00	-0.825	60.041	19	21	Si	60.0
142	0	0	0	-71	109	-5	0.00	0.00	-0.922	66.329	19	21	Si	54.3
143	0	0	0	-68	-96	-9	0.00	0.00	-0.812	56.750	18	21	Si	63.4
144	0	0	0	-161	-126	-8	0.00	0.00	-1.359	98.157	19	21	Si	36.7
145	0	0	0	-124	93	5	0.00	0.00	-1.049	73.815	19	21	Si	48.8
146	0	0	0	-99	307	24	0.00	0.00	-2.585	179.446	19	21	Si	20.1
147	0	0	0	-146	312	-59	0.00	0.00	-2.633	181.853	19	21	Si	19.8
148	0	0	0	-218	282	-2	0.00	0.00	-2.376	163.860	19	21	Si	22.0
149	-0	-0	0	-477	-246	-29	0.00	0.00	-4.021	276.068	19	21	Si	13.0
150	0	0	0	247	47	45	0.00	0.00	-2.079	143.318	19	21	Si	25.1
151	0	0	0	115	220	55	0.00	0.00	-2.030	141.435	19	21	Si	25.5
152	0	0	0	-236	-162	79	0.00	0.00	-2.407	165.433	19	21	Si	21.8
153	0	0	0	-68	253	128	0.00	0.00	-2.389	165.509	19	21	Si	21.8
154	0	0	0	6 18	125	13	0.00	0.00	-1.052	74.200	19	21	Si S:	48.5
155 156	0	0		-13	105 226	65 62	0.00	0.00	-1.178 -1.907	83.261 133.323	19 19	21	Si Si	43.2 27.0
156	0	0	0	-13 58	17	31	0.00	0.00	-0.633	44.415	19	21	Si Si	81.1
13/	U	U	U	20	1 /	31	0.00	0.00	-0.033	44.413	19	21	31	01.1

P.	Nx	Ny	Nxy	Mx	My	Mxy	Afx	Afy	σcmax	σfmax	Cbc	Cbf	Ver	Cs
158	0	0	0	-105	26	60	0.00	0.00	-1.044	72.679	18	21	Si	49.5
159	0	0	0	-8	207	-12	0.00	0.00	-1.743	122.664	19	21	Si	29.3
160	0	0	0	-132	-43	-42	0.00	0.00	-1.232	85.490	18	21	Si	42.1

Combinazione QP: σca[DaN/cmq]=112.050 σfa[DaN/cmq]=3600.000

		<u> </u>	aN/cmqJ=I						1	T .		ı		I
P.	Nx	Ny	Nxy	Mx	My	Mxy	Afx	Afy	σcmax	σfmax	Cbc	Cbf	Ver	Cs
	kg/mq	kg/mq	kg/mq	kg	kg	kg	m^2/m	m^2/m	DaN/cmq					
1	0	0	0	-7	66	12	0.00	0.00	-0.558	38.309	27	27	Si	94.0
2	0	0	0	-7	58	-9	0.00	0.00	-0.486	33.325	27	27	Si	>100
3	0	0	0	-4	29	-20	0.00	0.00	-0.318	21.845	27	27	Si	>100
4	0	0	0	-4	19	-18	0.00	0.00	-0.242	16.621	27	27	Si	>100
5	0	0	0	-9	37	-17	0.00	0.00	-0.341	23.429	27	27	Si	>100
6	0	0	0	-16	76	-26	0.00	0.00	-0.644	44.167	27	27	Si	81.5
7	0	0	0	-13	69	-41	0.00	0.00	-0.709	48.625	27	27	Si	74.0
8	0	0	0	-0	20	-28	0.00	0.00	-0.329	22.559	27	27	Si	>100
9	0	0	0	-106	-20	-41	0.00	0.00	-1.017	69.761	27	27	Si	51.6
10	0	0	0	-193	-50	-35	0.00	0.00	-1.629	111.773	27	27	Si	32.2
11	0	0	0	-144	-44	-32	0.00	0.00	-1.235	84.760	27	27	Si	42.5
12	0	0	0	65	-8	-46	0.00	0.00	-0.728	49.938	27	27	Si	72.1
13	0	0	0	-86	-61	-26	0.00	0.00	-0.860		27	27	Si	61.0
14	0	0	0	-216	-96	14	0.00	0.00	-1.817	124.724	27	27	Si	28.9
15	0	0	0	90	-1	20	0.00	0.00	-0.758	51.989	27	27	Si	69.2
16	0	0	0	-22	-22	10	0.00	0.00	-0.260	17.825	27	27	Si	>100
17	0	0	0	-100	-44	-8	0.00	0.00	-0.846	58.071	27	27	Si	62.0
18	0	0	0	84	-5	-30	0.00	0.00	-0.737	50.583	27	27	Si	71.2
19	0	0	0	-148	-69	-18	0.00	0.00	-1.245	85.471	27	27	Si	42.1
20	0	0	0	-177	-83	22	0.00	0.00	-1.489	102.213	27	27	Si	35.2
21	0	0	0	120	-2	38	0.00	0.00	-1.031	70.750	27	27	Si	50.9
22	0	0	0	38	-21	26	0.00	0.00	-0.387	26.543	27	27	Si	>100
23	0	0	0	-36	-15	24	0.00	0.00	-0.434		27	27	Si	>100
24	0	0	0	-14	159	43	0.00	0.00	-1.338		27	27	Si	39.2
25	0	0	0	9	285	68	0.00	0.00	-2.401	164.807	27	27	Si	21.8
26	0	0	0	-14	181	64	0.00	0.00	-1.582	108.540	27	27	Si	33.2
27	0	0	0	-105	-181	24	0.00	0.00	-1.540	105.713	27	27	Si	34.1
28	0	0	0	-98	-171	-26	0.00	0.00	-1.478	101.437	27	27	Si	35.5
29	0	0	0	-11	157	-67	0.00	0.00	-1.458	100.054	27	27	Si	36.0
30	0	0	0	8	220	-69	0.00	0.00	-1.908	130.976	27	27	Si	27.5
31	0	0	0	-14	82	-44	0.00	0.00	-0.814	55.842	27	27	Si	64.5
32	0	0	0	-23	-25	-19	0.00	0.00	-0.349	23.978	27	27	Si	>100
33	0	0	0	44	-26	-34	0.00	0.00	-0.471	32.313	27	27	Si	>100
34	0	0	0	94	-23	-25	0.00	0.00	-0.793	54.440	27	27	Si	66.1
35	0	0	0	-158	-91	-5	0.00	0.00	-1.331	91.364	27	27	Si	39.4
36	0	0	0	-141	-86	3	0.00	0.00	-1.185	81.306	27	27	Si	44.3
37	0	0	0	49	-28	25	0.00	0.00	-0.435		27	27	Si	>100
38	0	0	0	-84	-12	31	0.00	0.00	-0.780	53.537	27	27	Si	67.2
39	0	0	0	-44	-16	-33	0.00	0.00	-0.750	37.825	27	27	Si	95.2
40	0	0	0	1	-22	6						27		>100
41	0	0	0	-261	-32	33	0.00	0.00	-2.197		27	27	Si	23.9
42	0	0	0	-109	-48	8	0.00	0.00	-0.922	63.282	27	27	Si	56.9
43	0	0	0	22	-33	69	0.00	0.00	-0.922	45.271	27	27	Si	79.5
44	0	0	0	-53	-15	67	0.00	0.00	-0.850	58.302	27	27	Si	61.7
45	0	0	0	-34	-13	34	0.00	0.00	-0.493	33.815	27	27	Si	>100
46	0	0	0	27	-13	28	0.00	0.00	-0.493		27	27	Si	>100
47	0	0	0	12	15	16	0.00	0.00	-0.388	16.341	27	27	Si	>100
48	0	0	0	2	46	22	0.00	0.00	-0.238	31.643	27	27	Si	>100
49	0	0	0	-48	-2	1	0.00	0.00	-0.401	27.576	27	27	Si	>100
50	0	0	0	-223	-59	16	0.00	0.00	-0.402	129.022	27	27	Si	27.9
51	0	0	0	-223	31	4	0.00	0.00	-0.673	46.218	27	27	Si	77.9
52	0	0	0	-189	49	15	0.00	0.00	-1.596	109.559	27	27	Si	32.9
53	0		0	-161	123	-21	0.00	0.00	-1.396		27	27	Si	38.7
		0												
54	0	0	0	-168	57	-44	0.00	0.00	-1.417		27	27	Si	37.0
	0	0	0	-89	92	-20	0.00	0.00	-0.779		27	27	Si	67.4
56	0	0	0	-99	60	-48	0.00	0.00	-0.849	58.246	27	27	Si	61.8
57	0	0	0	56	188	135	0.00	0.00	-2.286	156.885	27	27	Si	22.9

P.	Nx	Ny	Nxy	Mx	My	Mxy	Afx	Afy	σcmax	σfmax	Cbc	Cbf	Ver	Cs
58	0	0	0	196	131	85	0.00	0.00	-2.137	146.667	27	27	Si	24.5
59	0	0	0	144	212	58	0.00	0.00	-2.066	141.819	27	27	Si	25.4
60	0	0	0	22	227	103	0.00	0.00	-2.228	152.928	27	27	Si	23.5
61	0	0	0	65 52	271 120	78 59	0.00	0.00	-2.425 -1.298	166.422 89.061	27 27	27 27	Si Si	21.6
63	0	0	0	1	247	107	0.00	0.00	-2.346	161.001	27	27	Si	22.4
64	0	0	0	-148	-3	30	0.00	0.00	-1.246	85.491	27	27	Si	42.1
65	0	0	0	77	250	56	0.00	0.00	-2.155	147.882	27	27	Si	24.3
66	0	0	0	-29	214	55	0.00	0.00	-1.804	123.776	27	27	Si	29.1
67	0	0	0	-80	121	-23	0.00	0.00	-1.022	70.151	27	27	Si	51.3
68	0	0	0	-107	-20	10	0.00	0.00	-0.906	62.177	27	27	Si	57.9
69	0	0	0	162	76	33	0.00	0.00	-1.424	97.699	27	27	Si	36.8
70	0	0	0	108	186	-6	0.00	0.00	-1.565	107.370	27	27	Si	33.5
71	0	0	0	-21	182	-38	0.00	0.00	-1.532	105.120	27	27	Si	34.2
72	0	0	0	40 70	142 226	-83 -28	0.00	0.00	-1.588 -1.902	108.997 130.502	27 27	27 27	Si Si	33.0 27.6
74	0	0	0	-76	14	-39	0.00	0.00	-0.735	50.457	27	27	Si	71.3
75	0	0	0	-114	59	-32	0.00	0.00	-0.753	66.030	27	27	Si	54.5
76	0	0	0	43	119	-44	0.00	0.00	-1.165	79.934	27	27	Si	45.0
77	0	0	0	-76	154	-31	0.00	0.00	-1.296	88.931	27	27	Si	40.5
78	0	0	0	-175	-6	0	0.00	0.00	-1.477	101.367	27	27	Si	35.5
79	0	0	0	-32	20	-30	0.00	0.00	-0.381	26.160	27	27	Si	>100
80	0	0	0	-79	142	21	0.00	0.00	-1.193	81.888	27	27	Si	44.0
81	0	0	0	-35	88	-10	0.00	0.00	-0.739	50.732	27	27	Si	71.0
82	0	0	0	10	40	43	0.00	0.00	-0.592	40.634	27	27	Si	88.6
83	0	0	0	-19 -45	120	31 65	0.00	0.00	-0.753	51.684	27	27	Si Si	69.7
85	0	0	0	-43 -50	120 -9	63	0.00	0.00	-1.137 -0.797	78.016 54.729	27 27	27 27	Si	46.1 65.8
86	0	0	0	60	-38	-49	0.00	0.00	-0.657	45.108	27	27	Si	79.8
87	0	0	0	-44	206	-38	0.00	0.00	-1.734	118.977	27	27	Si	30.3
88	0	0	0	32	224	-83	0.00	0.00	-2.085	143.109	27	27	Si	25.2
89	0	0	0	26	265	-97	0.00	0.00	-2.441	167.520	27	27	Si	21.5
90	0	0	0	-158	7	-40	0.00	0.00	-1.330	91.243	27	27	Si	39.5
91	0	0	0	-274	-224	-2	0.00	0.00	-2.312	158.664	27	27	Si	22.7
92	0	0	0	26	-42	-17	0.00	0.00	-0.354	24.290	27	27	Si	>100
93	0	0	0	7 69	93	-61	0.00	0.00	-1.053	72.240	27	27	Si	49.8 34.2
95	0	0	0	161	178 86	36 46	0.00	0.00	-1.533 -1.538	105.219 105.578	27 27	27 27	Si Si	34.2
96	0	0	0	-75	32	68	0.00	0.00	-0.902	61.874	27	27	Si	58.2
97	0	0	0	-18	174	74	0.00	0.00	-1.604	110.113	27	27	Si	32.7
98	0	0	0	-21	113	60	0.00		-1.105				Si	47.5
99	0	0	0	37	21	68	0.00	0.00	-0.771	52.906	27	27	Si	68.0
100	0	0	0	-70	-45	73	0.00	0.00	-1.073	73.668	27	27	Si	48.9
101	0	0	0	-172	-27	63	0.00	0.00	-1.606	110.238	27	27	Si	32.7
102	0	0	0	-12	13	107	0.00	0.00	-0.831	57.045	27	27	Si	63.1
103	0	0	0	-191 -24	-193	53 67	0.00	0.00	-2.008	137.810 99.404	27 27	27 27	Si Si	26.1 36.2
104	0	0	0	215	160 51	36	0.00	0.00	-1.448 -1.816	124.595	27	27	Si	28.9
103	0	0	0	-11	-83	60	0.00	0.00	-0.983	67.487	27	27	Si	53.3
107	0	0	0	152	213	63	0.00	0.00	-2.125	145.848	27	27	Si	24.7
108	0	0	0	45	205	95	0.00	0.00	-2.083	142.974	27	27	Si	25.2
109	0	0	0	55	132	36	0.00	0.00	-1.215	83.413	27	27	Si	43.2
110	0	0	0	66	265	66	0.00	0.00	-2.293	157.376	27	27	Si	22.9
111	0	0	0	107	109	66	0.00	0.00	-1.399	96.036	27	27	Si	37.5
112	0	0	0	101	250	67	0.00	0.00	-2.281	156.523	27	27	Si	23.0
113	-0	0	-0	-428 -232	-178	124	0.00	0.00	-3.609	247.696	27	27	Si	14.5
114	0	0	0	-232	198 291	134 -43	0.00	0.00	-2.022 -2.452	138.784 168.264	27 27	27 27	Si Si	25.9 21.4
116	0	0	0	-200	301	-43	0.00	0.00	-2.432	174.015	27	27	Si	20.7
117	0	0	0	-7	284	5	0.00	0.00	-2.390	164.017	27	27	Si	21.9
118	0	0	0	-62	356	17	0.00	0.00	-2.998	205.753	27	27	Si	17.5
119	0	0	0	-44	127	4	0.00	0.00	-1.072	73.598	27	27	Si	48.9
120	0	0	0	-52	271	-2	0.00	0.00	-2.284	156.726	27	27	Si	23.0
121	0	0	0	-71	343	-35	0.00	0.00	-2.895	198.676	27	27	Si	18.1
122	0	0	0	-90	59	-4	0.00	0.00	-0.760	52.139	27	27	Si	69.0

P.	Nx	Ny	Nxy	Mx	My	Mxy	Afx	Afy	σcmax	σfmax	Cbc	Cbf	Ver	Cs
123	0	0	0	-17	277	-124	0.00	0.00	-2.614	179.412	27	27	Si	20.1
124	0	0	-0	-182	-137	-66	0.00	0.00	-1.919	131.701	27	27	Si	27.3
125	0	0	0	127	248	-48	0.00	0.00	-2.185	149.927	27	27	Si	24.0
126	0	0	0	233	52	-36	0.00	0.00	-1.962	134.640	27	27	Si	26.7
127	0	0	0	-96	49	51	0.00	0.00	-0.877	60.204	27	27	Si	59.8
128	0	0	0	21	273	10	0.00	0.00	-2.298	157.700	27	27	Si	22.8
129	0	0	0	-84	114	-50	0.00	0.00	-0.958	65.735	27	27	Si	54.8
130	0	0	0	20	235	-18	0.00	0.00	-1.976	135.634	27	27	Si	26.5
131	0	0	0	32	193	-65	0.00	0.00	-1.759	120.716	27	27	Si	29.8
132	0	0	0	65	113	-27	0.00	0.00	-1.049	72.001	27	27	Si	50.0
133	0	0	0	6	298	-70	0.00	0.00	-2.513	172.448	27	27	Si	20.9
134	0	0	0	-10	-82	-66	0.00	0.00	-1.026	70.400	27	27	Si	51.1
135	0	0	0	211	47	-43	0.00	0.00	-1.779	122.065	27	27	Si	29.5
136	0	0	0	46	173	-96	0.00	0.00	-1.889	129.667	27	27	Si	27.8
137	0	0	0	143	176	-65	0.00	0.00	-1.892	129.857	27	27	Si	27.7
138	0	0	0	93	174	-71	0.00	0.00	-1.812	124.327	27	27	Si	29.0
139	0	0	0	97	32	-61	0.00	0.00	-1.122	76.985	27	27	Si	46.8
140	0	0	0	64	196	-66	0.00	0.00	-1.855	127.283	27	27	Si	28.3
141	0	0	0	51	61	-39	0.00	0.00	-0.779	53.464	27	27	Si	67.3
142	0	0	0	-63	102	-3	0.00	0.00	-0.862	59.153	27	27	Si	60.9
143	0	0	0	-71	-90	-7	0.00	0.00	-0.769	52.774	27	27	Si	68.2
144	0	0	0	-146	-117	-8	0.00	0.00	-1.227	84.231	27	27	Si	42.7
145	0	0	0	-111	88	4	0.00	0.00	-0.932	63.970	27	27	Si	56.3
146	0	0	0	-87	280	22	0.00	0.00	-2.359	161.878	27	27	Si	22.2
147	0	0	0	-130	285	-52	0.00	0.00	-2.398	164.554	27	27	Si	21.9
148	0	0	0	-194	257	-2	0.00	0.00	-2.166	148.627	27	27	Si	24.2
149	-0	-0	0	-426	-219	-24	0.00	0.00	-3.586	246.123	27	27	Si	14.6
150	0	0	0	223	46	39	0.00	0.00	-1.881	129.057	27	27	Si	27.9
151	0	0	0	105	202	48	0.00	0.00	-1.855	127.322	27	27	Si	28.3
152	0	-0	0	-209	-143	69	0.00	0.00	-2.130	146.205	27	27	Si	24.6
153	0	0	0	-59	232	115	0.00	0.00	-2.176	149.349	27	27	Si	24.1
154	0	0	0	8	116	11	0.00	0.00	-0.975	66.942	27	27	Si	53.8
155	0	0	0	19	98	59	0.00	0.00	-1.091	74.875	27	27	Si	48.1
156	0	0	0	-10	208	56	0.00	0.00	-1.750	120.079	27	27	Si	30.0
157	0	0	0	55	17	28	0.00	0.00	-0.591	40.578	27	27	Si	88.7
158	0	0	0	-101	19	49	0.00	0.00	-0.958	65.751	27	27	Si	54.8
159	0	0	0	-5	192	-11	0.00	0.00	-1.616	110.874	27	27	Si	32.5
160	0	0	0	-113	-41	-43	0.00	0.00	-1.109	76.137	27	27	Si	47.3

Verifica aperture fessure:Wamm_Freq[mm]=0.400 Wamm_Qp[mm]=0.300

P.	Nx	Ny	Nxy	Mx	My	Mxy	σfmed	Wd	Wk	Cb	Ver	Cs
	kg/mq	kg/mq	kg/mq	kg	kg	kg	DaN/cmq	mm	mm			
1	0	0	0	-7	66	12	38.309	0.007	0.012	22(Fr)	Si	34.3
1	0	0	0	-7	66	12	38.309	0.007	0.012	27(Qp)	Si	25.7
2	0	0	0	-7	57	-9	33.241	0.006	0.010	24(Fr)	Si	39.5
2	0	0	0	-7	58	-9	33.325	0.006	0.010	27(Qp)	Si	29.6
3	0	0	0	-4	28	-20	16.119	0.003	0.005	24(Fr)	Si	81.5
3	0	0	0	-4	29	-20	16.601	0.003	0.005	27(Qp)	Si	59.3
4	0	0	0	-4	18	-18	10.226	0.002	0.003	24(Fr)	Si	>100
4	0	0	0	-4	19	-18	11.127	0.002	0.003	27(Qp)	Si	88.5
5	0	0	0	-9	37	-17	21.628	0.004	0.007	27(Qp)	Si	45.5
5	0	0	0	-9	35	-17	20.495	0.004	0.006	24(Fr)	Si	64.1
6	0	0	0	-16	76	-26	44.167	0.008	0.013	27(Qp)	Si	22.3
6	0	0	0	-16	75	-25	43.306	0.008	0.013	24(Fr)	Si	30.3
7	0	0	0	-13	68	-41	39.438	0.007	0.012	24(Fr)	Si	33.3
7	0	0	0	-13	69	-41	40.131	0.007	0.012	27(Qp)	Si	24.5
8	0	0	0	0	19	-28	11.152	0.002	0.003	24(Fr)	Si	>100
8	0	0	0	-0	20	-28	11.309	0.002	0.003	27(Qp)	Si	87.1
9	0	0	0	-104	-19	-41	60.009	0.011	0.018	24(Fr)	Si	21.9
9	0	0	0	-106	-20	-41	61.542	0.011	0.019	27(Qp)	Si	16.0
10	0	0	0	-193	-50	-35	111.773	0.020	0.034	27(Qp)	Si	8.81
10	0	0	0	-190	-49	-36	110.100	0.020	0.034	24(Fr)	Si	11.9
11	0	0	0	-144	-44	-32	83.410	0.015	0.025	22(Fr)	Si	15.7
11	0	0	0	-144	-44	-32	83.410	0.015	0.025	27(Qp)	Si	11.8

P.	Nx	Ny	Nxy	Mx	My	Mxy	σfmed	Wd	Wk	Cb	Ver	Cs
12	0	0	0	65	-8	-46	37.391	0.007	0.011	27(Qp)	Si	26.3
12	0	0	0	63	-9	-47	36.506	0.007	0.011	24(Fr)	Si	36.0
13	0	0	0	-86	-61	-26	49.579	0.009	0.015	27(Qp)	Si	19.9
13	0	0	0	-85	-61	-26	49.101	0.009	0.015	24(Fr)	Si	26.7
14	0	0	0	-216 -216	-96 -96	14	124.724 124.724	0.022 0.022	0.038	27(Qp)	Si Si	7.90
15	0	0	0	89	-90	20	51.470	0.022	0.038	22(Fr) 24(Fr)	Si	25.5
15	0	0	0	90	-1	20	51.989	0.009	0.016	27(Qp)	Si	18.9
16	0	0	0	-20	-22	11	12.532	0.002	0.004	24(Fr)	Si	>100
16	0	0	0	-22	-22	10	12.721	0.002	0.004	27(Qp)	Si	77.4
17	0	0	0	-100	-44	-8	58.071	0.010	0.018	22(Fr)	Si	22.6
17	0	0	0	-100	-44	-8	58.071	0.010	0.018	27(Qp)	Si	17.0
18	0	0	0	83	-5	-30	48.033	0.009	0.015	24(Fr)	Si	27.3
18	0	0	0	84	-5	-30	48.310	0.009	0.015	27(Qp)	Si	20.4
19	0	0	0	-148	-69	-18	85.471	0.015	0.026	27(Qp)	Si	11.5
19	0	0	0	-146	-69	-17	84.582	0.015	0.026	24(Fr)	Si	15.5
20	0	0	0	-177	-83	22	102.213	0.018	0.031	27(Qp)	Si	9.64
20	0	0	0	-177	-83	22	102.213	0.018	0.031	22(Fr)	Si	12.8
21	0	0	0	120	-2 -3	38	69.432	0.012	0.021	27(Qp)	Si	14.2
21 22	0	0	0	119 38	-3 -21	39 26	68.829 21.883	0.012	0.021	24(Fr) 22(Fr)	Si Si	19.1 60.0
22	0	0	0	38	-21	26	21.883	0.004	0.007	27(Qp)	Si	45.0
23	0	0	0	-35	-15	24	20.147	0.004	0.007	24(Fr)	Si	65.2
23	0	0	0	-36	-15	24	20.534	0.004	0.006	27(Qp)	Si	48.0
24	0	0	0	-14	159	43	91.856	0.016	0.028	27(Qp)	Si	10.7
24	0	0	0	-14	155	43	89.492	0.016	0.027	24(Fr)	Si	14.7
25	0	0	0	9	283	68	163.949	0.029	0.050	24(Fr)	Si	8.01
25	0	0	0	9	285	68	164.807	0.030	0.050	27(Qp)	Si	5.98
26	0	0	0	-14	181	64	104.657	0.019	0.032	27(Qp)	Si	9.41
26	0	0	0	-14	181	64	104.657	0.019	0.032	22(Fr)	Si	12.5
27	0	0	0	-105	-181	24	104.406	0.019	0.032	27(Qp)	Si	9.43
27	0	0	0	-104	-178	24	102.739	0.018	0.031	24(Fr)	Si	12.8
28	0	0	0	-98	-171 -171	-26	98.619 98.619	0.018	0.030	27(Qp)	Si	9.99
28	0	0	0	-98 -11	157	-26 -67	98.619	0.018	0.030 0.028	22(Fr) 27(Qp)	Si Si	13.3 10.8
29	0	0	0	-11	157	-67	90.904	0.016	0.028	22(Fr)	Si	14.4
30	0	0	0	8	220	-69	127.057	0.010	0.028	27(Qp)	Si	7.75
30	0	0	0	8	220	-69	127.057	0.023	0.039	22(Fr)	Si	10.3
31	0	0	0	-15	81	-46	47.064	0.008	0.014	23(Fr)	Si	27.9
31	0	0	0	-14	82	-44	47.697	0.009	0.015	27(Qp)	Si	20.6
32	0	0	0	-22	-25	-20	14.467	0.003	0.004		Si	90.8
32	0	0	0	-23	-25	-19	14.649	0.003	0.004	27(Qp)	Si	67.2
33	0	0	0	44	-27	-32	25.308	0.005	0.008	24(Fr)	Si	51.9
33	0	0	0	44	-26	-34	25.553	0.005	0.008	27(Qp)	Si	38.5
34	0	0	0	94	-23	-25	54.440	0.010	0.017	22(Fr)	Si	24.1
34	0	0	0	94	-23	-25	54.440	0.010	0.017	27(Qp)	Si	18.1
35	0	0	0	-158 -158	-91 -91	-5 -5	91.364 91.364	0.016 0.016	0.028	27(Qp)	Si Si	10.8
36	0	0	0	-138	-91 -86	-5	81.306	0.016	0.028	22(Fr) 27(Qp)	Si	12.1
36	0	0	0	-141	-86	4	80.052	0.013	0.023	24(Fr)	Si	16.4
37	0	0	0	49	-28	25	28.506	0.014	0.024	27(Qp)	Si	34.6
37	0	0	0	49	-28	25	28.506	0.005	0.009	22(Fr)	Si	46.1
38	0	0	0	-84	-12	31	48.463	0.009	0.015	27(Qp)	Si	20.3
38	0	0	0	-84	-12	31	48.463	0.009	0.015	22(Fr)	Si	27.1
39	0	0	0	-43	-16	-33	24.935	0.004	0.008	24(Fr)	Si	52.7
39	0	0	0	-44	-16	-33	25.541	0.005	0.008	27(Qp)	Si	38.6
40	0	0	0	1	-21	6	12.397	0.002	0.004	24(Fr)	Si	>100
40	0	0	0	1	-22	6	12.456	0.002	0.004	27(Qp)	Si	79.1
41	0	0	0	-261	-32	33	150.798	0.027	0.046	27(Qp)	Si	6.53
41	0	0	0	-261	-32	33	150.798	0.027	0.046	22(Fr)	Si	8.71
42	0	0	0	-109	-48	8	63.282	0.011	0.019	27(Qp)	Si	15.6
42	0	0	0	-108	-48	8	62.409	0.011	0.019	24(Fr)	Si	21.0
43	0	0	0	22 23	-33	69	18.928 18.735	0.003	0.006	27(Qp)	Si Si	52.0 70.1
43	0	0	0	-52	-32 -14	68	30.175	0.003	0.006	24(Fr) 23(Fr)	Si	43.5
44	U	U	U	-32	-14	09	30.1/3	0.003	0.009	23(FI)	31	43.3

P.	Nx	Ny	Nxy	Mx	My	Mxy	σfmed	Wd	Wk	Cb	Ver	Cs
44	0	0	0	-53	-15	67	30.415	0.005	0.009	27(Qp)	Si	32.4
45	0	0	0	-34	-13	35	19.598	0.004	0.006	23(Fr)	Si	67.0
45	0	0	0	-34	-13	34	19.621	0.004	0.006	27(Qp)	Si	50.2
46	0	0	0	27	5	28	15.691	0.003	0.005	22(Fr)	Si	
46	0	0	0	27 12	5 15	28 16	15.691 8.701	0.003	0.005	27(Qp) 22(Fr)	Si Si	62.8 >100
47	0	0	0	12	15	16	8.701	0.002	0.003	27(Qp)	Si	>100
48	0	0	0	2	46	22	26.817	0.002	0.003	22(Fr)	Si	49.0
48	0	0	0	2	46	22	26.817	0.005	0.008	27(Qp)	Si	36.7
49	0	0	0	-48	-2	1	27.576	0.005	0.008	22(Fr)	Si	47.6
49	0	0	0	-48	-2	1	27.576	0.005	0.008	27(Qp)	Si	35.7
50	0	0	0	-223	-59	16	129.022	0.023	0.039	22(Fr)	Si	10.2
50	0	0	0	-223	-59	16	129.022	0.023	0.039	27(Qp)	Si	
51	0	0	0	-80	31	4	46.218	0.008	0.014	27(Qp)	Si	
51	0	0	0	-80	31	4	46.218	0.008	0.014	22(Fr)	Si	28.4
52	0	0	0	-189	49	15	109.559	0.020	0.033	22(Fr)	Si	12.0
52	0	0	0	-189	49	15	109.559	0.020	0.033	27(Qp)	Si	8.99
53	0	0	0	-161	123	-21	93.085	0.017	0.028	27(Qp)	Si	10.6
53	0	0	0	-160	123	-22	92.774	0.017	0.028	24(Fr)	Si	14.2
54 54	0	0	0	-167 -168	56 57	-45 -44	96.305 97.231	0.017 0.017	0.029	24(Fr)	Si Si	13.6
55	0	0	0	-108	92	-44	52.936	0.017	0.030	27(Qp) 24(Fr)	Si	24.8
55	0	0	0	-89	92	-20	53.432	0.009	0.016	27(Qp)	Si	18.4
56	0	0	0	-98	59	-48	56.480	0.010	0.017	24(Fr)	Si	23.3
56	0	0	0	-99	60	-48	57.238	0.010	0.017	27(Qp)	Si	17.2
57	0	0	0	56	188	135	108.591	0.019	0.033	27(Qp)	Si	9.07
57	0	0	0	56	188	134	108.492	0.019	0.033	24(Fr)	Si	12.1
58	0	0	0	196	131	85	113.289	0.020	0.035	27(Qp)	Si	8.69
58	0	0	0	196	131	85	113.190	0.020	0.034	24(Fr)	Si	11.6
59	0	0	0	144	212	58	122.430	0.022	0.037	27(Qp)	Si	8.04
59	0	0	0	143	211	58	122.086	0.022	0.037	24(Fr)	Si	10.8
60	0	0	0	22	227	103	131.050	0.023	0.040	27(Qp)	Si	7.52
60	0	0	0	21	226	103	130.462	0.023	0.040	24(Fr)	Si	10.1
61	0	0	0	65 65	271 270	78 78	156.945 156.268	0.028	0.048	27(Qp) 24(Fr)	Si Si	6.28 8.40
62	0	0	0	52	120	59	69.168	0.028	0.048	24(F1) 27(Qp)	Si	14.2
62	0	0	0	51	118	59	68.513	0.012	0.021	24(Fr)	Si	19.2
63	0	0	0	1	246	107	142.140	0.025	0.043	24(Fr)	Si	9.24
63	0	0	0	1	247	107	142.595	0.026	0.043	27(Qp)	Si	
64	0	0	0	-148	-3	30	85.491	0.015	0.026	27(Qp)	Si	11.5
64	0	0	0	-148	-3	30	85.491	0.015	0.026	22(Fr)	Si	15.4
65	0	0	0	76	250	55	144.421	0.026	0.044	24(Fr)	Si	9.09
65	0	0	0	77	250	56	144.875	0.026	0.044	27(Qp)	Si	
66	0	0	0	-29	214	55	123.776	0.022	0.038	27(Qp)	Si	
66	0	0	0	-30	213	54	123.161	0.022	0.038	24(Fr)	Si	
67	0	0	0	-80	121	-23	70.151	0.013	0.021	27(Qp)	Si	
67	0	0	0	-81 -107	119 -20	-24 10	68.885 62.177	0.012	0.021	24(Fr) 22(Fr)	Si Si	
68	0	0	0	-107	-20	10	62.177	0.011	0.019	22(Fr) 27(Qp)	Si	15.8
69	0	0	0	162	76	33	93.845	0.011	0.019	27(Qp)	Si	10.5
69	0	0	0	162	75	32	93.747	0.017	0.029	24(Fr)	Si	14.0
70	0	0	0	108	186	-6	107.370	0.019	0.033	27(Qp)	Si	
70	0	0	0	108	185	-7	106.862	0.019	0.033	24(Fr)	Si	
71	0	0	0	-21	182	-38	105.120	0.019	0.032	27(Qp)	Si	
71	0	0	0	-21	181	-39	104.437	0.019	0.032	24(Fr)	Si	12.6
72	0	0	0	40	141	-84	81.329	0.015	0.025	24(Fr)	Si	
72	0	0	0	40	142	-83	81.899	0.015	0.025	27(Qp)	Si	12.0
73	0	0	0	70	226	-28	130.502	0.023	0.040	27(Qp)	Si	
73	0	0	0	70	225	-29	129.882	0.023	0.040	24(Fr)	Si	
74	0	0	0	-76	14	-39	43.959	0.008	0.013	27(Qp)	Si	
74	0	0	0	-76	13	-40	43.884	0.008	0.013	24(Fr)	Si	
75	0	0	0	-114	59	-32	66.030	0.012	0.020	22(Fr)	Si	
75 76	0	0	0	-114	59 118	-32 45	66.030 68.008	0.012 0.012	0.020 0.021	27(Qp) 24(Fr)	Si Si	14.9 19.3
76	0	0	0	42 43	118	-45 -44	68.610	0.012	0.021	24(Fr) 27(Qp)	Si	
70	U	U	U	43	117	4	00.010	0.012	0.041	∠/(QP)	اد	17.7

177	P.	Nx	Ny	Nxy	Mx	My	Mxy	σfmed	Wd	Wk	Cb	Ver	Cs
Temporal Color	77	0		0	-76	154	-31	88.931	0.016	0.027	27(Qp)	Si	
The color													
Toggraphy													
The color The													
Section Sect											27(Qp)		
Section Sect		-											
St													
Section Sect													
Section Sect													
Section Sect			0										
83		0	0	0	10	40	43		0.004	0.007		Si	42.5
Section Sect		- 1	0		-19						27(Qp)		
SS													
85			-										
SS													
86													
86													
ST													
88		-											
88													
88													
89 0 0 0 26 265 .97 153.254 0.027 0.047 22(pt) Si 6.43 89 0 0 0 26 265 .97 153.254 0.027 0.047 22(pt) Si 8.57 90 0 0 0 1-158 7 -40 91.243 0.016 0.028 27(pp) Si 18.4 91 0 0 0 2-274 -224 -2 158.664 0.028 0.048 22(pt) Si 8.28 91 0 0 0 2-274 -224 -2 158.664 0.028 0.048 22(pt) Si 6.83 92 0 0 0 2-6 -41 -17 23.90 0.004 0.007 24(pt) Si 6.83 93 0 0 0 7 93 -61 53.954 0.010 0.01 22(pt) Si <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>													
89		0	0										
99	89	0	0	0	26	265	-97	153.254	0.027	0.047		Si	8.57
91 0 0 0 0 274 -224 -2 158.664 0.028 0.048 22(Fr) Si 8.28 91 0 0 0 0 -274 -224 -2 158.664 0.028 0.048 27(Qp) Si 6.21 92 0 0 0 0 0 26 -41 -17 23.970 0.004 0.007 27(Qp) Si 54.8 92 0 0 0 0 0 26 -42 -17 24.90 0.004 0.007 27(Qp) Si 54.8 93 0 0 0 0 7 93 -61 53.954 0.010 0.016 22(Fr) Si 24.3 93 0 0 0 0 7 93 -61 53.954 0.010 0.016 22(Fr) Si 24.3 94 0 0 0 0 69 178 36 102.960 0.018 0.031 22(Fr) Si 12.8 94 0 0 0 0 69 178 36 102.960 0.018 0.031 22(Fr) Si 12.8 94 0 0 0 0 69 178 36 102.960 0.018 0.031 22(Fr) Si 12.8 95 0 0 0 161 86 46 93.115 0.017 0.028 27(Qp) Si 10.6 95 0 0 0 161 86 46 93.115 0.017 0.028 27(Qp) Si 10.6 95 0 0 0 161 86 46 93.115 0.017 0.028 27(Qp) Si 12.4 96 0 0 0 -75 32 68 43.578 0.008 0.013 27(Qp) Si 22.6 96 0 0 0 0 -75 32 68 43.578 0.008 0.013 22(Fr) Si 32.1 97 0 0 0 0 -18 174 74 100.784 0.018 0.031 22(Fr) Si 13.0 98 0 0 0 -18 174 74 100.784 0.018 0.031 22(Fr) Si 13.0 98 0 0 0 -21 113 60 65.304 0.012 0.020 27(Qp) Si 95.7 99 0 0 0 0 -18 174 74 100.784 0.018 0.031 22(Fr) Si 13.0 99 0 0 0 0 37 22 67 21.376 0.004 0.007 27(Qp) Si 20.1 99 0 0 0 0 -70 45 73 40.489 0.007 0.012 22(Fr) Si 22.1 100 0 0 0 -70 45 73 40.489 0.007 0.012 22(Fr) Si 32.4 100 0 0 0 -12 13 107 7.287 0.004 0.007 27(Qp) Si 24.3 101 0 0 0 0 -12 13 107 7.287 0.001 0.002 27(Qp) Si 24.3 101 0 0 0 0 -12 13 107 7.287 0.001 0.002 22(Fr) Si 32.4 100 0 0 0 0 -12 13 107 7.287 0.001 0.002 22(Fr) Si 32.4 100 0 0 0 0 -170 -25 64 98.389 0.018 0.030 24(Fr) Si 13.1 101 0 0 0 0 0 -12 13 107 7.287 0.001 0.002 22(Fr) Si 24.3 101 0 0 0 0 0 -12 13 107 7.287 0.001 0.002 22(Fr) Si 22.4 100 0 0 0 0 -12 13 107 7.287 0.001 0.002 22(Fr) Si 11.8 103 0 0 0 0 -12 15 51 36 124.595 0.022 0.038 22(Fr) Si 11.8 103 0 0 0 0 -18 1-93 53 111.031 0.020 0.034 24(Fr) Si 11.8 103 0 0 0 0 18 191 1-193 53 111.031 0.020 0.034 24(Fr) Si 11.8 103 0 0 0 0 152 213 63 123.34 0.022 0.038 27(Qp) Si 2.26 106 0 0 0 0 152 213 63 123.34 0.022 0.038 27(Qp) Si 2.79 107 0 0 0 0 152 213 63 123.34 0.022 0.038 27(Qp) Si 7.90 105 0 0 0 0 152 213 63 123.34 0.022 0.038 27(Qp) Si 7.90 105 0 0 0 0 152 213 63	90	0	0	0			-40		0.016		27(Qp)		
91 0 0 0 0 2-274 -224 -2 158.664 0.028 0.048 27(Qp) Si 6.21 92 0 0 0 0 0 26 -41 -117 23.970 0.004 0.007 24(Fr) Si 54.8 92 0 0 0 0 0 26 -42 -17 24.290 0.004 0.007 27(Qp) Si 40.5 93 0 0 0 0 7 93 -61 53.954 0.010 0.016 22(Fr) Si 24.3 93 0 0 0 0 7 93 -61 53.954 0.010 0.016 22(Fr) Si 24.3 94 0 0 0 0 69 178 36 102.960 0.018 0.031 22(Fr) Si 12.8 94 0 0 0 0 69 178 36 102.960 0.018 0.031 27(Qp) Si 9.57 95 0 0 0 161 86 46 93.115 0.017 0.028 27(Qp) Si 10.6 95 0 0 0 161 86 46 93.115 0.017 0.028 22(Fr) Si 12.8 96 0 0 0 0 -75 32 68 43.578 0.008 0.013 27(Qp) Si 22.6 96 0 0 0 0 -75 32 68 43.578 0.008 0.013 27(Qp) Si 9.57 97 0 0 0 -18 174 74 100.784 0.018 0.031 27(Qp) Si 9.77 97 0 0 0 -18 174 74 100.784 0.018 0.031 22(Pr) Si 13.0 98 0 0 0 0 -18 174 74 100.784 0.018 0.031 22(Pr) Si 13.0 98 0 0 0 0 -21 113 60 65.304 0.012 0.020 22(Pr) Si 15.1 98 0 0 0 0 37 22 68 21.399 0.004 0.007 27(Qp) Si 9.57 99 0 0 0 0 -37 21 68 21.399 0.004 0.007 27(Qp) Si 9.57 100 0 0 0 -70 -45 73 40.489 0.007 0.012 22(Fr) Si 24.3 101 0 0 0 0 -70 -45 73 40.489 0.007 0.012 22(Fr) Si 32.4 100 0 0 0 0 -70 -45 73 40.489 0.007 0.012 22(Fr) Si 32.4 101 0 0 0 0 -70 -45 73 40.489 0.007 0.012 27(Qp) Si 9.88 102 0 0 0 -12 13 107 7.287 0.004 0.007 27(Qp) Si 9.88 103 0 0 0 -12 13 107 7.287 0.001 0.002 22(Fr) Si 32.4 100 0 0 0 0 -70 -45 73 40.489 0.007 0.012 27(Qp) Si 9.88 102 0 0 0 -170 -25 64 98.389 0.018 0.030 27(Qp) Si 9.88 102 0 0 0 -12 13 107 7.287 0.001 0.002 22(Fr) Si 31.8 103 0 0 0 -12 13 107 7.287 0.001 0.002 22(Fr) Si 11.8 103 0 0 0 -12 13 107 7.287 0.001 0.002 22(Fr) Si 11.8 103 0 0 0 -18 -19 1-19 53 111.631 0.000 0.003 27(Qp) Si 9.88 104 0 0 0 0 -12 13 107 7.287 0.001 0.002 27(Qp) Si 9.88 105 0 0 0 0 -12 13 107 7.287 0.001 0.002 27(Qp) Si 9.88 106 0 0 0 0 -12 13 107 7.287 0.001 0.002 27(Qp) Si 9.88 107 0 0 0 0 0 -18 1-19 1-19 53 111.631 0.000 0.003 27(Qp) Si 9.88 100 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0													
92 0 0 0 0 26 -41 -17 23.970 0.004 0.007 24(Fr) Si 54.8 92 0 0 0 0 26 -42 -17 24.290 0.004 0.007 27(Qp) Si 40.5 93 0 0 0 0 7 93 -61 53.954 0.010 0.016 27(Qp) Si 24.3 93 0 0 0 0 7 93 -61 53.954 0.010 0.016 27(Qp) Si 18.3 94 0 0 0 0 69 178 36 102.960 0.018 0.031 27(Qp) Si 18.3 94 0 0 0 0 69 178 36 102.960 0.018 0.031 27(Qp) Si 19.57 95 0 0 0 161 86 46 93.115 0.017 0.028 27(Qp) Si 10.6 95 0 0 0 161 86 46 93.115 0.017 0.028 27(Qp) Si 10.6 95 0 0 0 0 161 86 46 93.115 0.017 0.028 22(Fr) Si 12.8 96 0 0 0 0 -75 32 68 43.578 0.008 0.013 27(Qp) Si 22.6 96 0 0 0 0 -75 32 68 43.578 0.008 0.013 27(Qp) Si 22.6 97 0 0 0 0 -18 174 74 100.784 0.018 0.031 27(Qp) Si 9.57 97 0 0 0 0 -18 174 74 100.784 0.018 0.031 27(Qp) Si 9.77 97 0 0 0 0 -18 174 74 100.784 0.018 0.031 27(Qp) Si 15.1 98 0 0 0 0 -21 113 60 65.304 0.012 0.020 27(Qp) Si 15.1 98 0 0 0 0 -21 113 60 65.304 0.012 0.020 27(Qp) Si 15.1 99 0 0 0 0 37 22 68 21.399 0.004 0.007 27(Qp) Si 24.60 99 0 0 0 0 -70 445 73 40.489 0.007 0.012 0.020 22(Fr) Si 24.3 101 0 0 0 0 -70 445 73 40.489 0.007 0.012 27(Qp) Si 33.3 101 0 0 0 0 -12 13 107 7.287 0.014 0.007 27(Qp) Si 34.0 101 0 0 0 0 -12 13 107 7.287 0.014 0.007 27(Qp) Si 24.3 101 0 0 0 0 -12 13 107 7.287 0.014 0.007 27(Qp) Si 24.3 101 0 0 0 0 -12 13 107 7.287 0.014 0.007 27(Qp) Si 33.3 101 0 0 0 0 -12 13 107 7.287 0.014 0.002 27(Qp) Si 24.3 101 0 0 0 0 0 -12 13 107 7.287 0.014 0.002 27(Qp) Si 24.3 101 0 0 0 0 0 -12 13 107 7.287 0.014 0.002 27(Qp) Si 24.3 101 0 0 0 0 0 -12 13 107 7.287 0.014 0.002 27(Qp) Si 24.3 101 0 0 0 0 0 -12 13 107 7.287 0.001 0.002 27(Qp) Si 24.3 101 0 0 0 0 0 -15 15 13 60 124.595 0.022 0.038 27(Qp) Si 30.1 103 0 0 0 0 -15 15 13 60 124.595 0.022 0.038 27(Qp) Si 30.0 105 0 0 0 0 152 213 63 123.334 0.022 0.038 27(Qp) Si 28.8 104 0 0 0 0 152 213 63 123.334 0.022 0.038 27(Qp) Si 28.2 106 0 0 0 0 152 213 63 123.334 0.022 0.038 27(Qp) Si 28.2 106 0 0 0 0 152 213 63 123.334 0.022 0.038 27(Qp) Si 28.3													
92 0 0 0 0 26 442 -17 24.290 0.004 0.007 27(Qp) Si 40.5 93 0 0 0 0 7 93 -61 53.954 0.010 0.016 27(Qp) Si 12.3 93 0 0 0 0 0 7 93 -61 53.954 0.010 0.016 27(Qp) Si 12.3 94 0 0 0 0 69 178 36 102.960 0.018 0.031 22(Fr) Si 12.8 94 0 0 0 0 69 178 36 102.960 0.018 0.031 22(Fr) Si 12.8 95 0 0 0 161 86 46 93.115 0.017 0.028 27(Qp) Si 19.5 95 0 0 0 0 161 86 46 93.115 0.017 0.028 27(Qp) Si 10.6 95 0 0 0 0 161 86 46 93.115 0.017 0.028 22(Fr) Si 14.1 96 0 0 0 -75 32 68 43.578 0.008 0.013 22(Fr) Si 30.1 97 0 0 0 0 -18 174 74 100.784 0.018 0.031 22(Fr) Si 30.1 97 0 0 0 0 -18 174 74 100.784 0.018 0.031 27(Qp) Si 10.6 98 0 0 0 0 -21 113 60 65.304 0.012 0.020 27(Qp) Si 15.1 98 0 0 0 0 -21 113 60 65.304 0.012 0.020 27(Qp) Si 15.1 99 0 0 0 0 37 22 67 21.376 0.004 0.002 22(Fr) Si 20.1 99 0 0 0 0 37 22 67 21.376 0.004 0.007 24(Fr) Si 32.4 100 0 0 0 -70 445 73 40.489 0.007 0.012 22(Fr) Si 32.4 100 0 0 0 -170 -25 64 98.389 0.018 0.03 27(Qp) Si 46.0 100 0 0 0 -170 -25 64 98.389 0.018 0.03 27(Qp) Si 24.3 101 0 0 0 0 -172 13 107 7.287 0.004 0.007 24(Fr) Si 33.1 101 0 0 0 0 -172 13 107 7.287 0.001 0.002 27(Qp) Si 24.1 100 0 0 0 0 -172 13 107 7.287 0.001 0.002 27(Qp) Si 24.3 101 0 0 0 0 -12 13 107 7.287 0.001 0.002 27(Qp) Si 13.3 101 0 0 0 0 -12 13 107 7.287 0.001 0.002 27(Qp) Si 13.1 103 0 0 0 -12 13 107 7.287 0.001 0.002 27(Qp) Si 9.88 102 0 0 0 -12 13 107 7.287 0.001 0.002 27(Qp) Si 9.88 104 0 0 0 -12 13 107 7.287 0.001 0.002 27(Qp) Si 9.88 104 0 0 0 0 -12 13 107 7.287 0.001 0.002 27(Qp) Si 9.88 104 0 0 0 0 -12 13 107 7.287 0.001 0.002 27(Qp) Si 9.88 104 0 0 0 0 -15 15 1 36 124.595 0.022 0.038 27(Qp) Si 10.7 105 0 0 0 0 155 213 62 123.59 0.022 0.038 27(Qp) Si 10.7 105 0 0 0 0 152 213 62 123.50 0.002 0.034 24(Fr) Si 10.5 106 0 0 0 0 152 213 62 123.50 0.002 0.038 24(Fr) Si 10.7 107 0 0 0 0 152 213 62 123.50 0.002 0.038 24(Fr) Si 10.5 106 0 0 0 0 152 213 62 123.50 0.002 0.038 24(Fr) Si 10.7 107 0 0 0 0 152 213 62 123.50 0.002 0.038 24(Fr) Si 10.7 107 0 0 0 0 152 213 63 123.334 0.022 0.038 27(Qp) Si 7.99 107 0 0 0 0 45 005 95 118.542 0.021 0													
93 0 0 0 0 7 93 -61 53.954 0.010 0.016 22(Fr) Si 24.3 93 0 0 0 0 7 93 -61 53.954 0.010 0.016 22(Fr) Si 18.3 94 0 0 0 0 69 178 36 102.960 0.018 0.031 22(Fr) Si 18.3 94 0 0 0 0 69 178 36 102.960 0.018 0.031 22(Fr) Si 18.3 95 0 0 0 161 86 46 93.115 0.017 0.028 27(Op) Si 19.57 95 0 0 0 161 86 46 93.115 0.017 0.028 27(Op) Si 10.6 95 0 0 0 0 161 86 46 93.115 0.017 0.028 27(Op) Si 22.6 96 0 0 0 0 -75 32 68 43.578 0.008 0.013 22(Fr) Si 31.4 97 0 0 0 0 -18 174 74 100.784 0.018 0.031 22(Fr) Si 30.1 97 0 0 0 0 -18 174 74 100.784 0.018 0.031 22(Fr) Si 13.0 98 0 0 0 0 -21 113 60 65.304 0.012 0.020 27(Op) Si 15.1 98 0 0 0 0 37 21 68 21.399 0.004 0.007 27(Op) Si 15.1 99 0 0 0 0 37 21 68 21.399 0.004 0.007 27(Op) Si 46.0 99 0 0 0 0 -70 -45 73 40.489 0.007 27(Op) Si 32.43 100 0 0 0 -70 -45 73 40.489 0.007 0.012 27(Op) Si 32.43 101 0 0 0 0 -12 13 10 7.287 0.004 0.007 27(Op) Si 32.43 101 0 0 0 0 -12 13 10 7.287 0.004 0.007 27(Op) Si 32.43 101 0 0 0 0 -12 13 10 7.287 0.004 0.007 27(Op) Si 32.43 101 0 0 0 0 -70 -45 73 40.489 0.007 0.012 27(Op) Si 32.43 101 0 0 0 0 -12 13 10 7.287 0.001 0.002 27(Fr) Si 33.3 101 0 0 0 0 -12 13 10 7.287 0.001 0.002 27(Op) Si 24.3 100 0 0 0 -12 13 10 7.287 0.001 0.002 27(Op) Si 33.4 101 0 0 0 0 -12 13 10 7.287 0.001 0.002 27(Op) Si 34.8 102 0 0 0 0 -12 13 10 7.287 0.001 0.002 27(Op) Si 34.8 102 0 0 0 0 -12 13 10 7.287 0.001 0.002 27(Op) Si 34.8 103 0 0 0 -12 13 10 7.287 0.001 0.002 27(Op) Si 9.88 102 0 0 0 0 -12 13 10 7.287 0.001 0.002 27(Op) Si 9.88 102 0 0 0 0 -12 13 10 7.287 0.001 0.002 27(Op) Si 9.88 102 0 0 0 0 -12 13 10 7.287 0.001 0.002 27(Op) Si 9.88 103 0 0 0 0 -12 13 10 7.287 0.001 0.002 27(Op) Si 9.88 104 0 0 0 0 0 -15 13 13 107 0.287 0.001 0.002 27(Op) Si 1.30 105 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0													
93													
94 0 0 69 178 36 102.960 0.018 0.031 22(Fr) Si 12.8 94 0 0 0 69 178 36 102.960 0.018 0.031 27(Qp) Si 9.57 95 0 0 0 161 86 46 93.115 0.017 0.028 22(Pq) Si 10.6 96 0 0 0 7.75 32 68 43.578 0.008 0.013 22(Fr) Si 14.1 96 0 0 0 -75 32 68 43.578 0.008 0.013 22(Fr) Si 30.1 97 0 0 0 -18 174 74 100.784 0.018 0.031 22(Fr) Si 30.1 97 0 0 0 -18 174 74 100.784 0.018 0.031 22(Fr) Si 10.1 <			-										
94 0 0 0 0 69 178 36 102.960 0.018 0.031 27(Qp) Si 9.57 95 0 0 0 0 161 86 46 93.115 0.017 0.028 27(Qp) Si 10.6 95 0 0 0 0 161 86 46 93.115 0.017 0.028 22(Fr) Si 14.1 96 0 0 0 0 -75 32 68 43.578 0.008 0.013 27(Qp) Si 22.6 96 0 0 0 0 -75 32 68 43.578 0.008 0.013 27(Qp) Si 22.6 97 0 0 0 0 -18 174 74 100.784 0.018 0.031 27(Qp) Si 30.1 97 0 0 0 0 -18 174 74 100.784 0.018 0.031 22(Fr) Si 30.1 98 0 0 0 0 -21 113 60 65.304 0.012 0.020 27(Qp) Si 15.1 98 0 0 0 0 -21 113 60 65.304 0.012 0.020 27(Qp) Si 15.1 98 0 0 0 0 37 21 68 21.399 0.004 0.007 27(Qp) Si 46.0 99 0 0 0 0 37 21 68 21.399 0.004 0.007 24(Fr) Si 61.4 100 0 0 0 -70 45 73 40.489 0.007 0.012 22(Fr) Si 32.4 100 0 0 0 -170 -25 64 98.389 0.018 0.030 27(Qp) Si 24.3 101 0 0 0 0 -12 13 107 7.287 0.001 0.002 27(Qp) Si 9.88 102 0 0 0 -12 13 107 7.287 0.001 0.002 22(Fr) Si 13.3 101 0 0 0 0 -12 13 107 7.287 0.001 0.002 22(Fr) Si 13.3 101 0 0 0 0 -12 13 107 7.287 0.001 0.002 22(Fr) Si 13.3 101 0 0 0 0 -12 13 107 7.287 0.001 0.002 22(Fr) Si 13.3 101 0 0 0 0 -12 13 107 7.287 0.001 0.002 22(Fr) Si 13.8 103 0 0 0 -12 13 107 7.287 0.001 0.002 22(Fr) Si 11.3 103 0 0 0 -188 -192 53 111.031 0.020 0.034 24(Fr) Si 11.8 103 0 0 0 -24 160 67 92.371 0.017 0.028 27(Qp) Si 8.82 104 0 0 0 -24 160 67 92.371 0.017 0.028 27(Qp) Si 14.2 104 0 0 0 -24 160 67 92.371 0.017 0.028 22(Fr) Si 10.5 105 0 0 0 0 152 213 62 123.270 0.022 0.038 27(Qp) Si 28.2 106 0 0 0 0 152 213 62 123.270 0.022 0.038 27(Qp) Si 28.2 106 0 0 0 0 152 213 62 123.270 0.022 0.038 24(Fr) Si 10.5 107 0 0 0 152 213 63 123.334 0.020 0.034 24(Fr) Si 28.2 106 0 0 0 0 152 213 62 123.270 0.022 0.038 24(Fr) Si 10.7 107 0 0 0 152 213 63 123.334 0.022 0.038 24(Fr) Si 10.7 107 0 0 0 152 213 63 123.334 0.022 0.038 24(Fr) Si 10.7 107 0 0 0 152 213 63 123.334 0.022 0.038 24(Fr) Si 10.7 107 0 0 0 152 213 63 123.334 0.022 0.038 24(Fr) Si 10.7		-											
95 0 0 0 161 86 46 93.115 0.017 0.028 27(Qp) Si 10.6 95 0 0 0 0 161 86 46 93.115 0.017 0.028 22(Fr) Si 14.1 96 0 0 0 0 -75 32 68 43.578 0.008 0.013 27(Qp) Si 22.6 96 0 0 0 0 -75 32 68 43.578 0.008 0.013 27(Qp) Si 30.1 97 0 0 0 0 -18 174 74 100.784 0.018 0.031 27(Qp) Si 9.77 97 0 0 0 0 -18 174 74 100.784 0.018 0.031 27(Qp) Si 15.1 98 0 0 0 0 -21 113 60 65.304 0.012 0.020 27(Qp) Si 15.1 98 0 0 0 0 -21 113 60 65.304 0.012 0.020 27(Qp) Si 15.1 99 0 0 0 37 21 68 21.376 0.004 0.007 27(Qp) Si 46.0 99 0 0 0 0 37 22 67 21.376 0.004 0.007 24(Fr) Si 61.4 100 0 0 0 -70 445 73 40.489 0.007 0.012 22(Fr) Si 32.4 100 0 0 0 -70 45 73 40.489 0.007 0.012 27(Qp) Si 24.3 101 0 0 0 0 -170 -25 64 98.389 0.018 0.030 27(Qp) Si 24.3 101 0 0 0 0 -172 -27 63 99.657 0.018 0.030 27(Qp) Si 24.3 101 0 0 0 0 -12 13 107 7.287 0.001 0.002 22(Fr) Si 13.3 101 0 0 0 0 -12 13 107 7.287 0.001 0.002 22(Fr) Si 31.3 101 0 0 0 0 -12 13 107 7.287 0.001 0.002 22(Fr) Si 13.8 103 0 0 0 -191 -193 53 111.634 0.020 0.034 27(Qp) Si 8.82 104 0 0 0 -24 160 67 92.371 0.017 0.028 27(Qp) Si 14.2 105 0 0 0 -24 160 67 92.371 0.017 0.028 27(Qp) Si 15.1 105 0 0 0 0 152 213 62 123.76 0.002 0.038 27(Qp) Si 10.7 105 0 0 0 0 152 213 62 123.70 0.002 0.038 27(Qp) Si 7.99 105 0 0 0 152 213 62 123.270 0.022 0.038 27(Qp) Si 7.99 106 0 0 0 152 213 62 123.270 0.022 0.038 27(Qp) Si 7.99 107 0 0 0 152 213 62 123.270 0.022 0.038 27(Qp) Si 7.99 108 0 0 0 45 205 95 118.542 0.021 0.036 27(Qp) Si 8.31		-											
95 0 0 0 0 161 86 46 93.115 0.017 0.028 22(Fr) Si 14.1 96 0 0 0 0 -75 32 68 43.578 0.008 0.013 27(Op) Si 22.6 96 0 0 0 0 -75 32 68 43.578 0.008 0.013 27(Op) Si 22.6 97 0 0 0 0 -18 174 74 100.784 0.018 0.031 27(Op) Si 9.77 97 0 0 0 0 -18 174 74 100.784 0.018 0.031 27(Op) Si 9.77 97 0 0 0 0 0 -18 174 74 100.784 0.018 0.031 22(Fr) Si 13.0 98 0 0 0 0 -21 113 60 65.304 0.012 0.020 27(Op) Si 15.1 98 0 0 0 0 37 21 68 2.399 0.004 0.007 27(Op) Si 46.0 99 0 0 0 37 22 67 21.376 0.004 0.007 27(Op) Si 46.0 99 0 0 0 0 37 22 67 21.376 0.004 0.007 27(Op) Si 61.4 100 0 0 0 0 -70 45 73 40.489 0.007 0.012 27(Op) Si 24.3 101 0 0 0 0 0 -172 2.7 63 99.657 0.018 0.030 27(Op) Si 24.3 101 0 0 0 0 0 -12 13 107 7.287 0.001 0.002 27(Op) Si 9.88 102 0 0 0 0 -12 13 107 7.287 0.001 0.002 27(Op) Si 9.88 102 0 0 0 0 -12 13 107 7.287 0.001 0.002 27(Op) Si 9.88 102 0 0 0 0 -12 13 107 7.287 0.001 0.002 27(Op) Si 9.88 103 0 0 0 0 -12 13 107 7.287 0.001 0.002 27(Op) Si 9.88 103 0 0 0 0 -12 13 107 7.287 0.001 0.002 27(Op) Si 11.8 103 0 0 0 0 -12 13 107 7.287 0.001 0.002 27(Op) Si 11.8 103 0 0 0 0 -12 13 107 7.287 0.001 0.002 27(Op) Si 11.8 103 0 0 0 0 -12 1 3 107 7.287 0.001 0.002 27(Op) Si 11.8 103 0 0 0 0 -12 1 3 107 7.287 0.001 0.002 27(Op) Si 11.8 103 0 0 0 0 -12 1 3 107 7.287 0.001 0.002 27(Op) Si 11.8 103 0 0 0 0 0 -15 1 13 07 7.287 0.001 0.002 27(Op) Si 11.8 103 0 0 0 0 0 -15 1 13 07 7.287 0.001 0.002 27(Op) Si 11.8 103 0 0 0 0 0 -15 1 13 07 7.287 0.001 0.002 27(Op) Si 11.8 103 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0													
96 0 0 -75 32 68 43.578 0.008 0.013 27(Qp) Si 22.6 96 0 0 0 -75 32 68 43.578 0.008 0.013 22(Pp) Si 30.1 97 0 0 0 -18 174 74 100.784 0.018 0.031 22(Pp) Si 30.1 97 0 0 0 -18 174 74 100.784 0.018 0.031 22(Pp) Si 30.1 98 0 0 0 -21 113 60 65.304 0.012 0.020 22(PQ) Si 15.1 99 0 0 0 37 22 67 21.376 0.004 0.007 24(Fr) Si 66.4 100 0 0 0 -70 -45 73 40.489 0.007 0.012 22(Pp) Si 24.3 <t< td=""><td>95</td><td>0</td><td>0</td><td>0</td><td>161</td><td>86</td><td>46</td><td></td><td>0.017</td><td></td><td></td><td>Si</td><td>14.1</td></t<>	95	0	0	0	161	86	46		0.017			Si	14.1
97 0 0 -18 174 74 100.784 0.018 0.031 27(Qp) Si 9.77 97 0 0 0 -18 174 74 100.784 0.018 0.031 22(Fr) Si 13.0 98 0 0 0 -21 1113 60 65.304 0.012 0.020 22(Fr) Si 15.1 98 0 0 0 37 21 68 21.399 0.004 0.007 27(Qp) Si 26.1 99 0 0 0 37 22 67 21.376 0.004 0.007 24(Fr) Si 66.4 100 0 0 0 -70 -45 73 40.489 0.007 0.012 22(Fr) Si 32.4 100 0 0 0 -170 -25 64 98.389 0.012 27(Cp) Si 24.3 101 </td <td></td> <td>0</td> <td>0</td> <td>0</td> <td>-75</td> <td></td> <td>68</td> <td>43.578</td> <td>0.008</td> <td>0.013</td> <td></td> <td></td> <td>22.6</td>		0	0	0	-75		68	43.578	0.008	0.013			22.6
97 0 0 -18 174 74 100.784 0.018 0.031 22(Fr) Si 13.0 98 0 0 0 -21 113 60 65.304 0.012 0.020 27(Qp) Si 15.1 98 0 0 0 -21 113 60 65.304 0.012 0.020 22(Fr) Si 20.1 99 0 0 0 37 21 68 21.399 0.004 0.007 24(Fr) Si 46.0 99 0 0 0 37 22 67 21.376 0.004 0.007 24(Fr) Si 61.4 100 0 0 0 -70 -45 73 40.489 0.007 0.012 22(Fr) Si 32.4 100 0 0 -170 -25 64 98.389 0.018 0.030 24(Fr) Si 13.3 101													
98 0 0 -21 113 60 65.304 0.012 0.020 27(Qp) Si 15.1 98 0 0 0 -21 113 60 65.304 0.012 0.020 22(Fr) Si 20.1 99 0 0 0 37 21 68 21.399 0.004 0.007 27(Qp) Si 46.0 100 0 0 0 70 -45 73 40.489 0.007 0.012 22(Fr) Si 32.4 100 0 0 -70 -45 73 40.489 0.007 0.012 22(Fr) Si 32.4 100 0 0 -170 -25 64 98.389 0.018 0.030 24(Fr) Si 13.3 101 0 0 0 -172 -27 63 99.657 0.018 0.030 22(Fr) Si 13.3 101 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>27(Qp)</td><td></td><td></td></t<>											27(Qp)		
98 0 0 -21 113 60 65.304 0.012 0.020 22(Fr) Si 20.1 99 0 0 0 37 21 68 21.399 0.004 0.007 27(Qp) Si 46.0 99 0 0 0 37 22 67 21.376 0.004 0.007 24(Fr) Si 61.4 100 0 0 0 -70 -45 73 40.489 0.007 0.012 22(Fr) Si 32.4 100 0 0 0 -70 -45 73 40.489 0.007 0.012 22(Fr) Si 32.4 100 0 0 0 -170 -25 64 98.389 0.018 0.030 24(Fr) Si 13.3 101 0 0 0 -12 13 107 7.287 0.001 0.002 22(Fr) Si >100 <													
99 0 0 0 37 21 68 21.399 0.004 0.007 27(Qp) Si 46.0 99 0 0 0 37 22 67 21.376 0.004 0.007 24(Fr) Si 61.4 100 0 0 0 -70 -45 73 40.489 0.007 0.012 22(Fr) Si 32.4 100 0 0 0 -70 -45 73 40.489 0.007 0.012 22(Fr) Si 32.4 101 0 0 0 -170 -25 64 98.389 0.018 0.030 24(Fr) Si 13.3 101 0 0 0 -172 -27 63 99.657 0.018 0.030 24(Fr) Si 9.83 102 0 0 0 -12 13 107 7.287 0.001 0.002 22(Fr) Si >100		- 1											
99 0 0 0 37 22 67 21.376 0.004 0.007 24(Fr) Si 61.4 100 0 0 0 -70 -45 73 40.489 0.007 0.012 22(Fr) Si 32.4 100 0 0 0 -70 -45 73 40.489 0.007 0.012 27(Qp) Si 24.3 101 0 0 0 -170 -25 64 98.389 0.018 0.030 24(Fr) Si 13.3 101 0 0 0 -172 -27 63 99.657 0.018 0.030 24(Fr) Si 13.3 102 0 0 0 -12 13 107 7.287 0.001 0.002 22(Fr) Si >100 103 0 0 0 -188 -192 53 111.031 0.020 0.034 24(Fr) Si <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>													
100 0 0 -70 -45 73 40.489 0.007 0.012 22(Fr) Si 32.4 100 0 0 0 -70 -45 73 40.489 0.007 0.012 27(Qp) Si 24.3 101 0 0 0 -170 -25 64 98.389 0.018 0.030 24(Fr) Si 13.3 101 0 0 0 -172 -27 63 99.657 0.018 0.030 27(Qp) Si 9.88 102 0 0 0 -12 13 107 7.287 0.001 0.002 22(Fr) Si >100 102 0 0 0 -12 13 107 7.287 0.001 0.002 22(Fr) Si >100 103 0 0 0 -188 -192 53 111.031 0.002 0.034 24(Fr) Si 11.8 <													
100 0 0 -70 -45 73 40.489 0.007 0.012 27(Qp) Si 24.3 101 0 0 0 -170 -25 64 98.389 0.018 0.030 24(Fr) Si 13.3 101 0 0 0 -172 -27 63 99.657 0.018 0.030 27(Qp) Si 9.88 102 0 0 0 -12 13 107 7.287 0.001 0.002 22(Fr) Si >100 102 0 0 0 -12 13 107 7.287 0.001 0.002 22(Fr) Si >100 103 0 0 0 -188 -192 53 111.031 0.020 0.034 24(Fr) Si 11.8 103 0 0 0 -191 -193 53 111.634 0.020 0.034 27(Qp) Si 8.82													
101 0 0 -170 -25 64 98.389 0.018 0.030 24(Fr) Si 13.3 101 0 0 0 -172 -27 63 99.657 0.018 0.030 27(Qp) Si 9.88 102 0 0 0 -12 13 107 7.287 0.001 0.002 22(Fr) Si >100 102 0 0 0 -12 13 107 7.287 0.001 0.002 22(Fr) Si >100 103 0 0 0 -188 -192 53 111.031 0.020 0.034 24(Fr) Si 11.8 103 0 0 0 -191 -193 53 111.634 0.020 0.034 24(Fr) Si 11.8 104 0 0 0 -24 160 67 92.371 0.017 0.028 22(Fr) Si 14.2													
101													
102 0 0 -12 13 107 7.287 0.001 0.002 22(Fr) Si >100 102 0 0 0 -12 13 107 7.287 0.001 0.002 27(Qp) Si >100 103 0 0 0 -188 -192 53 111.031 0.020 0.034 24(Fr) Si 11.8 103 0 0 0 -191 -193 53 111.634 0.020 0.034 24(Fr) Si 11.8 104 0 0 0 -24 160 67 92.371 0.017 0.028 22(Fr) Si 14.2 104 0 0 0 -24 160 67 92.371 0.017 0.028 22(Fr) Si 14.2 105 0 0 0 215 51 36 124.595 0.022 0.038 27(Qp) Si 7.90													
103 0 0 -188 -192 53 111.031 0.020 0.034 24(Fr) Si 11.8 103 0 0 0 -191 -193 53 111.634 0.020 0.034 27(Qp) Si 8.82 104 0 0 0 -24 160 67 92.371 0.017 0.028 22(Fr) Si 14.2 104 0 0 0 -24 160 67 92.371 0.017 0.028 22(Fr) Si 14.2 105 0 0 0 215 51 36 124.595 0.022 0.038 27(Qp) Si 7.90 105 0 0 0 215 51 36 124.595 0.022 0.038 22(Fr) Si 10.5 105 0 0 0 215 51 36 124.595 0.022 0.038 22(Fr) Si 10.5											22(Fr)		
103 0 0 -188 -192 53 111.031 0.020 0.034 24(Fr) Si 11.8 103 0 0 0 -191 -193 53 111.634 0.020 0.034 27(Qp) Si 8.82 104 0 0 0 -24 160 67 92.371 0.017 0.028 22(Fr) Si 14.2 104 0 0 0 -24 160 67 92.371 0.017 0.028 22(Fr) Si 14.2 105 0 0 0 215 51 36 124.595 0.022 0.038 27(Qp) Si 7.90 105 0 0 0 215 51 36 124.595 0.022 0.038 22(Fr) Si 10.5 105 0 0 0 215 51 36 124.595 0.022 0.038 22(Fr) Si 10.5			0	0		13	107	7.287	0.001	0.002	27(Qp)		>100
104 0 0 0 -24 160 67 92.371 0.017 0.028 22(Fr) Si 14.2 104 0 0 0 -24 160 67 92.371 0.017 0.028 27(Qp) Si 10.7 105 0 0 0 215 51 36 124.595 0.022 0.038 27(Qp) Si 7.90 105 0 0 0 215 51 36 124.595 0.022 0.038 27(Qp) Si 7.90 105 0 0 0 215 51 36 124.595 0.022 0.038 22(Fr) Si 10.5 106 0 0 0 -10 -80 61 46.500 0.008 0.014 24(Fr) Si 28.2 106 0 0 0 -11 -83 60 48.033 0.009 0.015 27(Qp) Si <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>24(Fr)</td><td></td><td></td></td<>											24(Fr)		
104 0 0 0 -24 160 67 92.371 0.017 0.028 27(Qp) Si 10.7 105 0 0 0 215 51 36 124.595 0.022 0.038 27(Qp) Si 7.90 105 0 0 0 215 51 36 124.595 0.022 0.038 22(Fr) Si 10.5 106 0 0 0 -10 -80 61 46.500 0.008 0.014 24(Fr) Si 28.2 106 0 0 0 -11 -83 60 48.033 0.009 0.015 27(Qp) Si 20.5 107 0 0 0 152 213 62 123.270 0.022 0.038 24(Fr) Si 10.7 107 0 0 0 152 213 63 123.334 0.022 0.038 27(Qp) Si <													
105 0 0 0 215 51 36 124.595 0.022 0.038 27(Qp) Si 7.90 105 0 0 0 215 51 36 124.595 0.022 0.038 22(Fr) Si 10.5 106 0 0 0 -10 -80 61 46.500 0.008 0.014 24(Fr) Si 28.2 106 0 0 0 -11 -83 60 48.033 0.009 0.015 27(Qp) Si 20.5 107 0 0 0 152 213 62 123.270 0.022 0.038 24(Fr) Si 10.7 107 0 0 0 152 213 63 123.334 0.022 0.038 27(Qp) Si 7.99 108 0 0 0 45 205 95 118.542 0.021 0.036 27(Qp) Si <													
105 0 0 0 215 51 36 124.595 0.022 0.038 22(Fr) Si 10.5 106 0 0 0 -10 -80 61 46.500 0.008 0.014 24(Fr) Si 28.2 106 0 0 0 -11 -83 60 48.033 0.009 0.015 27(Qp) Si 20.5 107 0 0 0 152 213 62 123.270 0.022 0.038 24(Fr) Si 10.7 107 0 0 0 152 213 63 123.334 0.022 0.038 27(Qp) Si 7.99 108 0 0 45 205 95 118.542 0.021 0.036 22(Fr) Si 11.1 108 0 0 45 205 95 118.542 0.021 0.036 27(Qp) Si 8.31													
106 0 0 0 -10 -80 61 46.500 0.008 0.014 24(Fr) Si 28.2 106 0 0 0 -11 -83 60 48.033 0.009 0.015 27(Qp) Si 20.5 107 0 0 0 152 213 62 123.270 0.022 0.038 24(Fr) Si 10.7 107 0 0 0 152 213 63 123.334 0.022 0.038 27(Qp) Si 7.99 108 0 0 45 205 95 118.542 0.021 0.036 22(Fr) Si 11.1 108 0 0 45 205 95 118.542 0.021 0.036 27(Qp) Si 8.31													
106 0 0 -11 -83 60 48.033 0.009 0.015 27(Qp) Si 20.5 107 0 0 0 152 213 62 123.270 0.022 0.038 24(Fr) Si 10.7 107 0 0 0 152 213 63 123.334 0.022 0.038 27(Qp) Si 7.99 108 0 0 0 45 205 95 118.542 0.021 0.036 22(Fr) Si 11.1 108 0 0 0 45 205 95 118.542 0.021 0.036 27(Qp) Si 8.31													
107 0 0 0 152 213 62 123.270 0.022 0.038 24(Fr) Si 10.7 107 0 0 0 152 213 63 123.334 0.022 0.038 27(Qp) Si 7.99 108 0 0 0 45 205 95 118.542 0.021 0.036 22(Fr) Si 11.1 108 0 0 0 45 205 95 118.542 0.021 0.036 27(Qp) Si 8.31													
107 0 0 0 152 213 63 123.334 0.022 0.038 27(Qp) Si 7.99 108 0 0 0 45 205 95 118.542 0.021 0.036 22(Fr) Si 11.1 108 0 0 0 45 205 95 118.542 0.021 0.036 27(Qp) Si 8.31													
108 0 0 0 45 205 95 118.542 0.021 0.036 22(Fr) Si 11.1 108 0 0 0 45 205 95 118.542 0.021 0.036 27(Qp) Si 8.31													
108 0 0 0 45 205 95 118.542 0.021 0.036 27(Qp) Si 8.31													
		0											
	109	0	0	0	55	128	37	74.185	0.013	0.023		Si	17.7

P.	Nx	Ny	Nxy	Mx	My	Mxy	σ fmed	Wd	Wk	Cb	Ver	Cs
109	0	0	0	55	132	36	76.262	0.014	0.023	27(Qp)	Si	12.9
110	0	0	0	66	263	66	152.297	0.027	0.046	24(Fr)	Si	8.62
110	0	0	0	66	265	66	153.187	0.027	0.047	27(Qp)	Si	6.43
111	0	0	0	107 106	109	66	63.193 62.017	0.011	0.019	27(Qp) 24(Fr)	Si Si	15.6 21.2
111	0	0	0	100	250	67	144.657	0.011	0.019	24(Fr) 27(Qp)	Si	6.81
112	0	0	0	100	249	67	143.894	0.026	0.044	24(Fr)	Si	9.13
113	-0	0	-0	-427	-177	4	247.187	0.020	0.075	24(Fr)	Si	5.31
113	-0	0	-0	-428	-178	4	247.696	0.044	0.075	27(Qp)	Si	3.98
114	0	0	0	-232	198	133	133.914	0.024	0.041	24(Fr)	Si	9.81
114	0	0	0	-232	198	134	134.054	0.024	0.041	27(Qp)	Si	7.35
115	0	0	0	-200	291	-43	168.264	0.030	0.051	27(Qp)	Si	5.85
115	0	0	0	-200	291	-43	168.089	0.030	0.051	24(Fr)	Si	7.81
116	0	0	0	-66	301	-13	174.015	0.031	0.053	27(Qp)	Si	5.66
116	0	0	0	-66	300	-13	173.287	0.031	0.053	24(Fr)	Si	7.58
117	0	0	0	-6	282	5	163.349	0.029	0.050	24(Fr)	Si	8.04
117	0	0	0	-7	284	5	164.017	0.029	0.050	27(Qp)	Si	6.00
118	0	0	0	-61	355	17	205.145	0.037	0.062	24(Fr)	Si	6.40
118	0	0	0	-62	356	17	205.753	0.037	0.063	27(Qp)	Si	4.79
119	0	0	0	-43	126	3	72.747	0.013	0.022	24(Fr)	Si	18.1
119	0	0	0	-44	127	4	73.598	0.013	0.022	27(Qp)	Si	13.4
120	0	0	0	-52	270	-2	156.066	0.028	0.048	24(Fr)	Si	8.41
120	0	0	0	-52	271	-2	156.726	0.028	0.048	27(Qp)	Si	6.28
121	0	0	0	-71	343	-35	198.676	0.036	0.061	27(Qp)	Si	4.96
121	0	0	0	-71	343	-35	198.238	0.036	0.060	24(Fr)	Si	6.62
122 122	0	0	0	-90 -90	59 59	-4 -4	52.139 52.139	0.009	0.016	22(Fr)	Si Si	25.2 18.9
123	0	0	0	-17	276	-123	159.756	0.009	0.016	27(Qp) 24(Fr)	Si	8.22
123	0	0	0	-17	277	-123	159.750	0.029	0.049	27(Qp)	Si	6.16
124	0	0	-0	-182	-137	-66	105.442	0.029	0.032	27(Qp)	Si	9.34
124	0	0	-0	-182	-136	-66	105.403	0.019	0.032	24(Fr)	Si	12.5
125	0	0	0	127	248	-48	143.296	0.026	0.044	24(Fr)	Si	9.16
125	0	0	0	127	248	-48	143.513	0.026	0.044	27(Qp)	Si	6.86
126	0	0	0	233	52	-36	134.640	0.024	0.041	27(Qp)	Si	7.32
126	0	0	0	233	53	-36	134.611	0.024	0.041	24(Fr)	Si	9.76
127	0	0	0	-96	49	51	55.658	0.010	0.017	27(Qp)	Si	17.7
127	0	0	0	-96	49	51	55.658	0.010	0.017	22(Fr)	Si	23.6
128	0	0	0	21	273	10	157.700	0.028	0.048	27(Qp)	Si	6.25
128	0	0	0	21	272	10	157.071	0.028	0.048	24(Fr)	Si	8.36
129	0	0	0	-84	114	-50	65.735	0.012	0.020	27(Qp)	Si	15.0
129	0	0	0	-84	112	-51	64.874					20.2
130	0	0	0	20	235	-18	135.634	0.024	0.041	27(Qp)		7.26
130	0	0	0	19	233	-17	134.990	0.024	0.041	24(Fr)		9.73
131	0	0	0	32	193	-65 65	111.368	0.020	0.034	27(Qp)		8.84
131	0	0	0	32 65	191 113	-65 -27	110.678 65.636	0.020 0.012	0.034	24(Fr) 27(Qp)		11.9 15.0
132	0	0	0	65	113	-27	64.977	0.012	0.020	24(Fr)		20.2
132	0	0	0	6	298	-70	172.448	0.012	0.020	27(Qp)		5.71
133	0	0	0	6	297	-70	171.927	0.031	0.053	24(Fr)	Si	7.64
134	0	0	0	-10	-82	-66	47.589	0.009	0.032	22(Fr)	Si	27.6
134	0	0	0	-10	-82	-66	47.589	0.009	0.014	27(Qp)	Si	20.7
135	0	0	0	211	47	-43	122.065	0.022	0.037	22(Fr)		10.8
135	0	0	0	211	47	-43	122.065	0.022	0.037	27(Qp)		8.07
136	0	0	0	46	173	-96	99.949	0.018	0.030	22(Fr)	Si	13.1
136	0	0	0	46	173	-96	99.949	0.018	0.030	27(Qp)		9.85
137	0	0	0	143	176	-65	101.774	0.018	0.031	22(Fr)	Si	12.9
137	0	0	0	143	176	-65	101.774	0.018	0.031	27(Qp)		9.68
138	0	0	0	93	174	-71	100.776	0.018	0.031	22(Fr)		13.0
138	0	0	0	93	174	-71	100.776	0.018	0.031	27(Qp)	Si	9.77
139	0	0	0	97	32	-61	56.065	0.010	0.017	27(Qp)		17.6
139	0	0	0	97	32	-61	56.065	0.010	0.017	22(Fr)		23.4
140	0	0	0	64	196	-66	113.231	0.020	0.034	27(Qp)		8.70
140	0	0	0	64	196	-66	113.231	0.020	0.034	22(Fr)	Si	11.6
141	0	0	0	51	61	-39	35.261	0.006	0.011	27(Qp)		27.9
141	0	0	0	53	59	-43	34.387	0.006	0.010	23(Fr)	Si	38.2

P.	Nx	Ny	Nxy	Mx	My	Mxy	σfmed	Wd	Wk	Cb	Ver	Cs
142	0	0	0	-63	102	-3	59.153	0.011	0.018	27(Qp)	Si	16.7
142	0	0	0	-63	102	-3	59.153	0.011	0.018	22(Fr)	Si	22.2
143	0	0	0	-69	-89	-7	51.686	0.009	0.016	24(Fr)	Si	25.4
143	0	0	0	-71	-90	-7	51.798	0.009	0.016	27(Qp)	Si	19.0
144	0	0	0	-146	-117	-8	84.231	0.015	0.026	27(Qp)	Si	11.7
144	0	0	0	-146	-117	-8	84.231	0.015	0.026	22(Fr)	Si	15.6
145	0	0	0	-111	88	4	63.970	0.011	0.019	27(Qp)	Si	15.4
145	0	0	0	-111	88	4	63.970	0.011	0.019	22(Fr)	Si	20.5
146	0	0	0	-87	280	22	161.878	0.029	0.049	27(Qp)	Si	6.08
146	0	0	0	-87	280	22	161.878	0.029	0.049	22(Fr)	Si	8.11
147	0	0	0	-130	285	-52	164.554	0.029	0.050	27(Qp)	Si	5.99
147	0	0	0	-130	285	-52	164.554	0.029	0.050	22(Fr)	Si	7.98
148	0	0	0	-194	257	-2	148.627	0.027	0.045	22(Fr)	Si	8.84
148	0	0	0	-194	257	-2	148.627	0.027	0.045	27(Qp)	Si	6.63
149	-0	-0	0	-426	-219	-24	246.123	0.044	0.075	22(Fr)	Si	5.34
149	-0	-0	0	-426	-219	-24	246.123	0.044	0.075	27(Qp)	Si	4.00
150	0	0	0	223	46	39	129.057	0.023	0.039	27(Qp)	Si	7.63
150	0	0	0	223	46	39	129.057	0.023	0.039	22(Fr)	Si	10.2
151	0	0	0	105	202	48	117.093	0.021	0.036	27(Qp)	Si	8.41
151	0	0	0	105	202	48	117.093	0.021	0.036	22(Fr)	Si	11.2
152	0	-0	0	-209	-143	69	121.100	0.022	0.037	22(Fr)	Si	10.8
152	0	-0	0	-209	-143	69	121.100	0.022	0.037	27(Qp)	Si	8.13
153	0	0	0	-59	232	115	134.059	0.024	0.041	22(Fr)	Si	9.80
153	0	0	0	-59	232	115	134.059	0.024	0.041	27(Qp)	Si	7.35
154	0	0	0	8	116	11	66.942	0.012	0.020	27(Qp)	Si	14.7
154	0	0	0	8	116	11	66.942	0.012	0.020	22(Fr)	Si	19.6
155	0	0	0	19	98	59	56.738	0.010	0.017	22(Fr)	Si	23.1
155	0	0	0	19	98	59	56.738	0.010	0.017	27(Qp)	Si	17.4
156	0	0	0	-10	208	56	120.079	0.022	0.037	22(Fr)	Si	10.9
156	0	0	0	-10	208	56	120.079	0.022	0.037	27(Qp)	Si	8.20
157	0	0	0	55	17	28	31.813	0.006	0.010	22(Fr)	Si	41.3
157	0	0	0	55	17	28	31.813	0.006	0.010	27(Qp)	Si	31.0
158	0	0	0	-99	21	50	57.308	0.010	0.017	24(Fr)	Si	22.9
158	0	0	0	-101	19	49	58.441	0.010	0.018	27(Qp)	Si	16.9
159	0	0	0	-5	192	-11	110.874	0.020	0.034	27(Qp)	Si	8.88
159	0	0	0	-5	192	-11	110.874	0.020	0.034	22(Fr)	Si	11.8
160	0	0	0	-113	-41	-43	65.120	0.012	0.020	22(Fr)	Si	20.2
160	0	0	0	-113	-41	-43	65.120	0.012	0.020	27(Qp)	Si	15.1

Verifica SLE delle aste in Legno secondo NTC 2008

Scenario di calcolo : $Set_NT_SLV_SLD_A2_STR/GEO$

Travata: 7 [1071, 1077]

L=1.43m

Crit.Prog: Legno Arcareccio u0 = 0.00m kdef: 0.80 Verifica: Verificata

Verifica freccia finale (eq. 6.2.a, §6.4.1 e eq. 6.6, §6.4.3 CNR-DT 206/2007)

X	Comb.	unet,fin	L/250.00	Cs
m		m	m	
0.85	14-27	0.00	0.01	24.3

Verifica freccia finale dovuta ai soli carichi variabili (eq. 6.2.a, §6.4.1 e eq. 6.6, §6.4.3 CNR-DT 206/2007)

X	Comb.	u2,fin	L/200.00	Cs
m		m	m	

X	Comb.	u2,fin	L/200.00	Cs
0.85	15-27	0.00	0.01	>100

X	Comb.	u2,in	L/300.00	Cs
m		m	m	
0.85	15	0.00	0.00	>100

Travata: 8 [1073, 1080]

L = 1.42m

Crit.Prog: Legno_Arcareccio u

u0 = 0.00m

kdef: 0.80

Verifica: Verificata

Verifica freccia finale (eg. 6.2.a, §6.4.1 e eg. 6.6, §6.4.3 CNR-DT 206/2007)

x	Comb.	unet,fin	L/250.00	Cs
m		m	m	
1.14	14-27	0.00	0.01	>100

Verifica freccia finale dovuta ai soli carichi variabili (eq. 6.2.a, §6.4.1 e eq. 6.6, §6.4.3 CNR-DT 206/2007)

- original freeze or that at soil carrett variable (eq. 0.2.a, 30.7.1 c eq. 0.0, 30.7.3 critt B1 200/2007)					
x	Comb.	u2,fin	L/200.00	Cs	
m		m	m		
1.14	15-27	0.00	0.01	>100	

Verifica freccia iniziale dovuta ai soli carichi variabili (eq. 6.5, §6.4.3 CNR-DT 206/2007)

		\ 1 , 0		
x	Comb.	u2,in	L/300.00	Cs
m		m	m	
1.14	15	0.00	0.00	>100

Travata: 9 [1075, 1083]

L = 1.43m

Crit.Prog: Legno Arcareccio

u0 = 0.00m

kdef: 0.80

Verifica: Verificata

Verifica freccia finale (eq. 6.2.a, §6.4.1 e eq. 6.6, §6.4.3 CNR-DT 206/2007)

X	Comb.	unet,fin	L/250.00	Cs
m		m	m	
1.00	15-27	0.00	0.01	50.7

Verifica freccia finale dovuta ai soli carichi variabili (eq. 6.2.a, §6.4.1 e eq. 6.6, §6.4.3 CNR-DT 206/2007)

X	Comb.	u2,fin	L/200.00	Cs
m		m	m	
1.00	15-27	0.00	0.01	>100

Verifica freccia iniziale dovuta ai soli carichi variabili (eq. 6.5, §6.4.3 CNR-DT 206/2007)

X	Comb.	u2,in	L/300.00	Cs
m		m	m	
1.00	15	0.00	0.00	>100

Travata: 10 [1073 , 1092]

L = 4.46m

Crit.Prog: Legno_Arcareccio

u0 = 0.00m

kdef: 0.80

Verifica: Verificata

verifica freccia finale (e	erifica freecia finate (eq. 0.2.a, y0.4.1 e eq. 0.0, y0.4.5 CNN-D1 200/2007)						
x	Comb.	unet,fin	L/250.00	Cs			
m		m	m				
1.78	15-27	0.00	0.02	8.30			

X	Comb.	u2,fin	L/200.00	Cs
m		m	m	
1.78	15-27	0.00	0.02	84.8

Verifica freccia iniziale dovuta ai soli carichi variabili (eq. 6.5, §6.4.3 CNR-DT 206/2007)

(-1, -1, -1, -1, -1, -1, -1, -1, -1, -1,					
X	Comb.	u2,in	L/300.00	Cs	
m		m	m		
1.78	15	0.00	0.01	56.5	

Travata: 11 [1077 , 1078]

L = 1.43m

Crit.Prog: Legno_Arcareccio u0 = 0.00m kdef: 0.80 Verifica: Verificata

Verifica freccia finale (eq. 6.2.a, §6.4.1 e eq. 6.6, §6.4.3 CNR-DT 206/2007)

x	Comb.	unet,fin	L/250.00	Cs
m		m	m	
0.29	15-27	0.00	0.01	73.5

Verifica freccia finale dovuta ai soli carichi variabili (eq. 6.2.a, §6.4.1 e eq. 6.6, §6.4.3 CNR-DT 206/2007)

er speak from the are the trend that the trend that the trend the				
X	Comb.	u2,fin	L/200.00	Cs
m		m	m	
0.29	15-27	0.00	0.01	>100

Verifica freccia iniziale dovuta ai soli carichi variabili (eq. 6.5, §6.4.3 CNR-DT 206/2007)

X	Comb.	u2,in	L/300.00	Cs
m		m	m	
0.29	15	0.00	0.00	>100

Travata: 12 [1078, 1079]

L = 1.43m

Crit.Prog: Legno Arcareccio u0 = 0.00m kdef: 0.80 Verifica: Verificata

Verifica freccia finale (eq. 6.2.a, §6.4.1 e eq. 6.6, §6.4.3 CNR-DT 206/2007)

X	Comb.	unet,fin	L/250.00	Cs
m		m	m	
0.43	15-27	-0.00	0.01	68.2

Verifica freccia finale dovuta ai soli carichi variabili (eq. 6.2.a, §6.4.1 e eq. 6.6, §6.4.3 CNR-DT 206/2007)

$\frac{1}{2}$						
X	Comb.	u2,fin	L/200.00	Cs		
m		m	m			
0.43	15-27	-0.00	0.01	>100		

Verifica freccia iniziale dovuta ai soli carichi variabili (ea. 6.5, \\$6.4.3 CNR-DT 206/2007)

religied freeda iniziale dovina al son carten variabili (eq. 0.3, 30.4.5 Civil DI 200/2007)						
x	Comb.	u2,in	L/300.00	Cs		
m		m	m			
0.43	15	-0.00	0.00	>100		

Travata: 13 [1080 , 1081]

L=1.43m

Crit.Prog: Legno_Arcareccio u0 = 0.00m kdef: 0.80 Verifica: Verificata

r crifica freecia finaie (cq. 0.2	.z.a, yo. 1.1 c cq. o.o, y	0.1.5 CITE DI 200/2007)		
v	Comb.	unet.fin	L/250.00	Cs

X	Comb.	unet,fin	L/250.00	Cs
m		m	m	
1.00	14-27	-0.00	0.01	76.9

X	Comb.	u2,fin	L/200.00	Cs
m		m	m	
1.00	15-27	-0.00	0.01	>100

Verifica freccia iniziale dovuta ai soli carichi variabili (eq. 6.5, §6.4.3 CNR-DT 206/2007)

X	Comb.	u2,in	L/300.00	Cs
m		m	m	
1.00	15	-0.00	0.00	>100

Travata: 14 [1081, 1082]

L = 1.42m

Crit.Prog: Legno_Arcareccio u0 = 0.00m kdef: 0.80 Verifica: Verificata

Verifica freccia finale (eq. 6.2.a, §6.4.1 e eq. 6.6, §6.4.3 CNR-DT 206/2007)

X	Comb.	unet,fin	L/250.00	Cs
m		m	m	
1.14	14-27	0.00	0.01	69.4

Verifica freccia finale dovuta ai soli carichi variabili (eq. 6.2.a, §6.4.1 e eq. 6.6, §6.4.3 CNR-DT 206/2007)

X	Comb.	u2,fin	L/200.00	Cs
m		m	m	
1.14	15-27	0.00	0.01	>100

Verifica freccia iniziale dovuta ai soli carichi variabili (eq. 6.5, §6.4.3 CNR-DT 206/2007)

<u>,</u>	$\frac{1}{2}$					
X	Comb.	u2,in	L/300.00	Cs		
m		m	m			
1.14	15	0.00	0.00	>100		

Travata: 15 [1082, 1072]

L=1.43m

Crit.Prog: Legno_Arcareccio u0 = 0.00m kdef: 0.80 Verifica: Verificata

Verifica freccia finale (eq. 6.2.a, §6.4.1 e eq. 6.6, §6.4.3 CNR-DT 206/2007)

X	Comb.	unet,fin	L/250.00	Cs
m		m	m	
0.57	15-27	0.00	0.01	23.2

Verifica freccia finale dovuta ai soli carichi variabili (ea. 6.2.a. \\$6.4.1 e ea. 6.6. \\$6.4.3 CNR-DT 206/2007)

reflica freeza finale do vala di son carteni variaoni (eq. 0.2.a, 50.7.1 e eq. 0.0, 50.7.3 e en 1200/2007)						
x	Comb.	u2,fin	L/200.00	Cs		
m		m	m			
0.57	15-27	0.00	0.01	>100		

Verifica freccia iniziale dovuta ai soli carichi variabili (eq. 6.5, §6.4.3 CNR-DT 206/2007)

X	Comb.	u2,in	L/300.00	Cs
m		m	m	
0.57	15	0.00	0.00	>100

Travata: 16 [1083 , 1084]

L = 1.42m

Crit.Prog: Legno Arcareccio

u0 = 0.00m

kdef: 0.80

Verifica: Verificata

Verifica freccia finale (eq. 6.2.a, §6.4.1 e eq. 6.6, §6.4.3 CNR-DT 206/2007)

X	Comb.	unet,fin	L/250.00	Cs
m		m	m	
0.28	14-27	0.00	0.01	87.9

Verifica freccia finale dovuta ai soli carichi variabili (eq. 6.2.a, §6.4.1 e eq. 6.6, §6.4.3 CNR-DT 206/2007)

X	Comb.	u2,fin	L/200.00	Cs
m		m	m	
0.28	15-27	0.00	0.01	>100

Verifica freccia iniziale dovuta ai soli carichi variabili (eq. 6.5, §6.4.3 CNR-DT 206/2007)

X	Comb.	u2,in	L/300.00	Cs
m		m	m	
0.28	15	0.00	0.00	>100

Travata: 17 [1084, 1085]

L = 1.43m

Crit.Prog: Legno_Arcareccio

u0 = 0.00m

kdef: 0.80

Verifica: Verificata

Verifica freccia finale (eq. 6.2.a, §6.4.1 e eq. 6.6, §6.4.3 CNR-DT 206/2007)

X	Comb.	unet,fin	L/250.00	Cs
m		m	m	
0.29	14-27	-0.00	0.01	94.8

Verifica freccia finale dovuta ai soli carichi variabili (eq. 6.2.a, §6.4.1 e eq. 6.6, §6.4.3 CNR-DT 206/2007)

f(x) = f(x)						
X	Comb.	u2,fin	L/200.00	Cs		
m		m	m			
0.29	15-27	-0.00	0.01	>100		

Verifica freccia iniziale dovuta ai soli carichi variabili (ea. 6.5, §6.4.3 CNR-DT 206/2007)

rerifica freccia iniziaie	verifica freedia iniziate dovata di soti carteni variabili (eq. 0.3, 30.4.3 CIVR-DI 200/2007)						
X	Comb.	u2,in	L/300.00	Cs			
m		m	m				
0.29	15	-0.00	0.00	>100			

Travata: 18 [1085, 1076]

L = 1.42m

Crit.Prog: Legno_Arcareccio

u0=0.00m

kdef: 0.80

Verifica: Verificata

Verifica freccia finale (eq. 6.2.a, §6.4.1 e eq. 6.6, §6.4.3 CNR-DT 206/2007)

X	Comb.	unet,fin	L/250.00	Cs
m		m	m	
0.28	14-27	0.00	0.01	>100

Verifica freccia finale dovuta ai soli carichi variabili (eq. 6.2.a, §6.4.1 e eq. 6.6, §6.4.3 CNR-DT 206/2007)

X	Comb.	u2,fin	L/200.00	Cs
m		m	m	
0.28	15-27	0.00	0.01	>100

r crigical freeera iniziate	er great freezitat interaction at Both ear territ variation (eq. 6.5, 30.7.5 erit DI 20072007)					
x	Comb.	u2,in	L/300.00	Cs		
m		m	m			
0.28	15	0.00	0.00	>100		

Travata: 19 [1086, 1087]

 $\overline{L} = 1.43m$

Crit.Prog: Legno Arcareccio u0 = 0.00m kdef: 0.80 Verifica: Verificata

Verifica freccia finale (eq. 6.2.a, §6.4.1 e eq. 6.6, §6.4.3 CNR-DT 206/2007)

X	Comb.	unet,fin	L/250.00	Cs
m		m	m	
1.00	15-27	-0.00	0.01	65.2

Verifica freccia finale dovuta ai soli carichi variabili (eq. 6.2.a, §6.4.1 e eq. 6.6, §6.4.3 CNR-DT 206/2007)

X	Comb.	u2,fin	L/200.00	Cs
m		m	m	
1.00	15-27	-0.00	0.01	>100

Verifica freccia iniziale dovuta ai soli carichi variabili (eq. 6.5, §6.4.3 CNR-DT 206/2007)

X	Comb.	u2,in	L/300.00	Cs
m		m	m	
1.00	15	-0.00	0.00	>100

Travata: 20 [1087, 1088]

L = 1.43m

Crit.Prog: Legno_Arcareccio u0 = 0.00m kdef: 0.80 Verifica: Verificata

Verifica freccia finale (eq. 6.2.a, §6.4.1 e eq. 6.6, §6.4.3 CNR-DT 206/2007)

X	Comb.	unet,fin	L/250.00	Cs
m		m	m	
1.14	15-27	0.00	0.01	70.9

Verifica freccia finale dovuta ai soli carichi variabili (eq. 6.2.a, §6.4.1 e eq. 6.6, §6.4.3 CNR-DT 206/2007)

X	Comb.	u2.fin	L/200.00	Cs
m		m	m	
1.14	15-27	0.00	0.01	>100

Verifica freccia iniziale dovuta ai soli carichi variabili (eq. 6.5, §6.4.3 CNR-DT 206/2007)

		\ 1 ' 0	,	
x	Comb.	u2,in	L/300.00	Cs
m		m	m	
1.14	15	0.00	0.00	>100

Travata: 21 [1088, 1074]

L=1.43m

Crit.Prog: Legno Arcareccio u0 = 0.00m kdef: 0.80 Verifica: Verificata

Verifica freccia finale (eq. 6.2.a, §6.4.1 e eq. 6.6, §6.4.3 CNR-DT 206/2007)

X	Comb.	unet,fin	L/250.00	Cs
m		m	m	
0.57	14-27	0.00	0.01	23.6

Verifica freccia finale dovuta ai soli carichi variabili (eq. 6.2.a, \$6.4.1 e eq. 6.6, \$6.4.3 CNR-DT 206/2007)

reflica freeda finale do vala di soli carteni variabili (eq. 0.2.a, 30.7.1 e eq. 0.0, 30.7.3 CIVI DI 200/2007)						
X	Comb.	u2,fin	L/200.00	Cs		
m		m	m			
0.57	15-27	0.00	0.01	>100		

X	Comb.	u2,in	L/300.00	Cs

X	Comb.	u2,in	L/300.00	Cs
m		m	m	
0.57	15	0.00	0.00	>100

Travata: 26 [1093, 1074]

L = 4.56m

Crit.Prog: Legno_Arcareccio u0 = 0.00m kdef: 0.80 Verifica: Verificata

Verifica freccia finale (eq. 6.2.a, §6.4.1 e eq. 6.6, §6.4.3 CNR-DT 206/2007)

X	Comb.	unet,fin	L/250.00	Cs
m		m	m	
2.28	15-27	0.00	0.02	12.1

Verifica freccia finale dovuta ai soli carichi variabili (eq. 6.2.a, §6.4.1 e eq. 6.6, §6.4.3 CNR-DT 206/2007)

X	Comb.	u2,fin	L/200.00	Cs
m		m	m	
2.73	15-27	0.00	0.02	>100

Verifica freccia iniziale dovuta ai soli carichi variabili (eq. 6.5, §6.4.3 CNR-DT 206/2007)

<u>, , , , , , , , , , , , , , , , , , , </u>	(-4,,,,,,,,,,					
X	Comb.	u2,in	L/300.00	Cs		
m		m	m			
2.73	15	0.00	0.02	>100		

Travata: 27 [1094, 0]

L=2.05m

Crit.Prog: Legno Arcareccio u0 = 0.00m kdef: 0.80 Verifica: Verificata

Verifica freccia finale (eq. 6.2.a, §6.4.1 e eq. 6.6, §6.4.3 CNR-DT 206/2007)

v	Comb.	unet fin	L/250 00	Cs
m	Combi	m	m	
1.03	14-27	-0.00	0.01	94.4

Verifica freccia finale dovuta ai soli carichi variabili (eq. 6.2.a, §6.4.1 e eq. 6.6, §6.4.3 CNR-DT 206/2007)

		\ 1	, 0	,
X	Comb.	u2,fin	L/200.00	Cs
m		m	m	
1.03	15-27	-0.00	0.01	>100

Verifica freccia iniziale dovuta ai soli carichi variabili (ea. 6.5, §6.4.3 CNR-DT 206/2007)

reigieur ji eeertei tittizittite	e great free to the transfer of the transfer of the contract o					
x	Comb.	u2,in	L/300.00	Cs		
m		m	m			
1.03	15	-0.00	0.01	>100		

Travata: 28 [1094, 1095]

L=1.43m

Crit.Prog: Legno_Arcareccio u0 = 0.00m kdef: 0.80 Verifica: Verificata

Verifica freccia finale (eq. 6.2.a, §6.4.1 e eq. 6.6, §6.4.3 CNR-DT 206/2007)

X	Comb.	unet,fin	L/250.00	Cs
m		m	m	
0.86	15-27	0.00	0.01	18.9

Verifica freccia finale dovuta ai soli carichi variabili (eq. 6.2.a, §6.4.1 e eq. 6.6, §6.4.3 CNR-DT 206/2007)

verifica freccia finale abvalla di soli carichi variabili (eq. 6.2.a, 36.4.1 e eq. 6.0, 36.4.3 Civit-D1 200/2007)						
X	Comb.	u2,fin	L/200.00	Cs		
m		m	m			
0.86	15-27	0.00	0.01	>100		

x	Comb.	u2,in	L/300.00	Cs
m		m	m	
0.86	15	0.00	0.00	>100

Travata: 29 [1095, 1096]

 $\overline{L} = 1.43m$

Crit.Prog: Legno_Arcareccio u0 = 0.00m kdef: 0.80 Verifica: Verificata

Verifica freccia finale (eg. 6.2.a, §6.4.1 e eg. 6.6, §6.4.3 CNR-DT 206/2007)

r et tytett ji eeetti jittiite (e	q. 0.2.a, 5 0 e eq. 0.0, 5	01110 01111 21 20012001)		
x	Comb.	unet,fin	L/250.00	Cs
m		m	m	
0.71	15-27	0.00	0.01	7.48

Verifica freccia finale dovuta ai soli carichi variabili (eq. 6.2.a, §6.4.1 e eq. 6.6, §6.4.3 CNR-DT 206/2007)

X	Comb.	u2,fin	L/200.00	Cs
m		m	m	
0.71	15-27	0.00	0.01	83.2

Verifica freccia iniziale dovuta ai soli carichi variabili (eq. 6.5, §6.4.3 CNR-DT 206/2007)

X	Comb.	u2,in	L/300.00	Cs
m		m	m	
0.71	15	0.00	0.00	55.4

Travata: 30 [1096 , 1097]

L = 1.43m

Crit.Prog: Legno Arcareccio u0 = 0.00m kdef: 0.80 Verifica: Verificata

Verifica freccia finale (eq. 6.2.a, §6.4.1 e eq. 6.6, §6.4.3 CNR-DT 206/2007)

r crigica freecia finaic (ci	1. 0.2.0, 30.7.1 6 69. 0.0, 3	0.7.5 CITE DI 200/2007)		
X	Comb.	unet,fin	L/250.00	Cs
m		m	m	
0.57	14-27	0.00	0.01	12.1

Verifica freccia finale dovuta ai soli carichi variabili (ea. 6.2.a. \\$6.4.1 e ea. 6.6. \\$6.4.3 CNR-DT 206/2007)

renjica ji cecia jinaie dovina di son carieni variastii (eq. 5.2.a, 35.7.1 e eq. 5.6, 36.7.5 e en El 200/2007)					
X	Comb.	u2,fin	L/200.00	Cs	
m		m	m		
0.57	15-27	0.00	0.01	>100	

Verifica freccia iniziale dovuta ai soli carichi variabili (eq. 6.5, §6.4.3 CNR-DT 206/2007)

X	Comb.	u2,in	L/300.00	Cs
m		m	m	
0.57	15	0.00	0.00	89.7

Travata: 31 [1097, 1092]

L = 1.43m

Crit.Prog: Legno_Arcareccio u0 = 0.00m kdef: 0.80 Verifica: Verificata

x	Comb.	unet,fin	L/250.00	Cs
m		m	m	
0.86	15-27	-0.00	0.01	8.31

X	Comb.	u2,fin	L/200.00	Cs
m		m	m	
0.86	15-27	-0.00	0.01	92.2

X	Comb.	u2,in	L/300.00	Cs
m		m	m	
0.86	15	-0.00	0.00	61.5

Travata: 32 [1098, 1099]

L = 1.43m

Crit.Prog: Legno Arcareccio u0 = 0.00m kdef: 0.80 Verifica: Verificata

Verifica freccia finale (eq. 6.2.a, §6.4.1 e eq. 6.6, §6.4.3 CNR-DT 206/2007)

X	Comb.	unet,fin	L/250.00	Cs
m		m	m	
0.86	14-27	0.00	0.01	11.9

Verifica freccia finale dovuta ai soli carichi variabili (eq. 6.2.a, §6.4.1 e eq. 6.6, §6.4.3 CNR-DT 206/2007)

<u> </u>						
X	Comb.	u2,fin	L/200.00	Cs		
m		m	m			
0.86	15-27	0.00	0.01	>100		

Verifica freccia iniziale dovuta ai soli carichi variabili (eq. 6.5, §6.4.3 CNR-DT 206/2007)

X	Comb.	u2,in	L/300.00	Cs
m		m	m	
0.86	15	0.00	0.00	88.4

Travata: 33 [1099 , 1100]

L = 1.43m

Crit.Prog: Legno Arcareccio u0 = 0.00m kdef: 0.80 Verifica: Verificata

Verifica freccia finale (eq. 6.2.a, §6.4.1 e eq. 6.6, §6.4.3 CNR-DT 206/2007)

	Carab	A C	L/250.00	C-
X	Comb.	unet,fin	L/250.00	Cs
m		m	m	
0.71	14-27	0.00	0.01	7.29

Verifica freccia finale dovuta ai soli carichi variabili (eq. 6.2.a, §6.4.1 e eq. 6.6, §6.4.3 CNR-DT 206/2007)

X	Comb.	u2,fin	L/200.00	Cs
m		m	m	
0.71	15-27	0.00	0.01	81.3

Verifica freccia iniziale dovuta ai soli carichi variabili (ea. 6.5. \6.4.3 CNR-DT 206/2007)

r crijica ji cecia iniziai	er greet interior do vina at soit eartern variabili (eq. 6.5, 36.1.5 Citt D1 200/2007)					
X	Comb.	u2,in	L/300.00	Cs		
m		m	m			
0.71	15	0.00	0.00	54.2		

Travata: 34 [1100 , 1093]

 $\overline{L} = 1.43m$

Crit.Prog: Legno_Arcareccio u0 = 0.00m kdef: 0.80 Verifica: Verificata

verijica freccia finale (e	9. 0.2.a, 80.4.1 e eg. 0.0, 5	0.4.3 CNK-D1 200/200/)		
x	Comb.	unet,fin	L/250.00	Cs
m		m	m	
0.57	14-27	0.00	0.01	17.4

X	Comb.	u2,fin	L/200.00	Cs
m		m	m	
0.57	15-27	0.00	0.01	>100

Verifica freccia iniziale dovuta ai soli carichi variabili (eq. 6.5, §6.4.3 CNR-DT 206/2007)

X	Comb.	u2,in	L/300.00	Cs
m		m	m	
0.57	15	0.00	0.00	>100

Travata: 35 [1083 , 1095]

L = 4.56m

Crit.Prog: Legno_Arcareccio u0 = 0.00m kdef: 0.80 Verifica: Verificata

Verifica freccia finale (eq. 6.2.a, §6.4.1 e eq. 6.6, §6.4.3 CNR-DT 206/2007)

X	Comb.	unet,fin	L/250.00	Cs
m		m	m	
2.28	15-27	0.00	0.02	6.18

Verifica freccia finale dovuta ai soli carichi variabili (eq. 6.2.a, §6.4.1 e eq. 6.6, §6.4.3 CNR-DT 206/2007)

		\ 1	, 0	,
X	Comb.	u2,fin	L/200.00	Cs
m		m	m	
2.28	15-27	0.00	0.02	63.9

Verifica freccia iniziale dovuta ai soli carichi variabili (ea. 6.5, §6.4.3 CNR-DT 206/2007)

-1						
X	Comb.	u2,in	L/300.00	Cs		
m		m	m			
2.28	15	0.00	0.02	42.6		

Travata: 36 [1095, 1082]

L = 4.46m

Crit.Prog: Legno Arcareccio u0 = 0.00m kdef: 0.80 Verifica: Verificata

Verifica freccia finale (eq. 6.2.a, §6.4.1 e eq. 6.6, §6.4.3 CNR-DT 206/2007)

X	Comb.	unet,fin	L/250.00	Cs
m		m	m	
2.23	14-27	0.00	0.02	6.56

Verifica freccia finale dovuta ai soli carichi variabili (eq. 6.2.a, §6.4.1 e eq. 6.6, §6.4.3 CNR-DT 206/2007)

X	Comb.	u2,fin	L/200.00	Cs
m		m	m	
2.23	15-27	0.00	0.02	67.9

Verifica freccia iniziale dovuta ai soli carichi variabili (eq. 6.5, §6.4.3 CNR-DT 206/2007)

3 3		(1 , 9		
X	Comb.	u2,in	L/300.00	Cs
m		m	m	
2.23	15	0.00	0.01	45.3

Travata: 37 [1084, 1096]

L=4.56m

Crit.Prog: Legno_Arcareccio u0 = 0.00m kdef: 0.80 Verifica: Verificata

X	Comb.	unet,fin	L/250.00	Cs
m		m	m	
2.28	15-27	0.00	0.02	5.83

X	Comb.	u2,fin	L/200.00	Cs
m		m	m	
2.28	15-27	0.00	0.02	60.3

Verifica freccia iniziale dovuta ai soli carichi variabili (eq. 6.5, §6.4.3 CNR-DT 206/2007)

X	Comb.	u2,in	L/300.00	Cs
m		m	m	
2.28	15	0.00	0.02	40.2

Travata: 38 [1096 , 1081]

L = 4.46m

Crit.Prog: Legno_Arcareccio u0 = 0.00m kdef: 0.80 Verifica: Verificata

Verifica freccia finale (eq. 6.2.a, §6.4.1 e eq. 6.6, §6.4.3 CNR-DT 206/2007)

X	Comb.	unet,fin	L/250.00	Cs
m		m	m	
2.23	14-27	0.00	0.02	6.45

Verifica freccia finale dovuta ai soli carichi variabili (eq. 6.2.a, §6.4.1 e eq. 6.6, §6.4.3 CNR-DT 206/2007)

X	Comb.	u2,fin	L/200.00	Cs
m		m	m	
2.23	15-27	0.00	0.02	66.9

Verifica freccia iniziale dovuta ai soli carichi variabili (eq. 6.5, §6.4.3 CNR-DT 206/2007)

(• 1) · · · · · · · · · · · · · · · · · ·					
X	Comb.	u2,in	L/300.00	Cs	
m		m	m		
2.23	15	0.00	0.01	44.6	

Travata: 39 [1085, 1097]

L=4.56m

Crit.Prog: Legno_Arcareccio u0 = 0.00m kdef: 0.80 Verifica: Verificata

Verifica freccia finale (eg. 6.2.a, §6.4.1 e eg. 6.6, §6.4.3 CNR-DT 206/2007)

X	Comb.	unet,fin	L/250.00	Cs
m		m	m	
2.28	15-27	0.00	0.02	6.11

Verifica freccia finale dovuta ai soli carichi variabili (ea. 6.2.a. \\$6.4.1 e ea. 6.6. \\$6.4.3 CNR-DT 206/2007)

7 Crifical freedia finate do vitta di soti carieni variabiti (eq. 0.2.4, 30.7.1 e eq. 0.0, 30.7.5 Crifi D1 200/2007)					
X	Comb.	u2,fin	L/200.00	Cs	
m		m	m		
2.28	15-27	0.00	0.02	63.0	

Verifica freccia iniziale dovuta ai soli carichi variabili (eq. 6.5, §6.4.3 CNR-DT 206/2007)

X	Comb.	u2,in	L/300.00	Cs
m		m	m	
2.28	15	0.00	0.02	42.0

Travata: 40 [1097, 1080]

L = 4.46m

Crit.Prog: Legno Arcareccio u0 =

u0 = 0.00m

kdef: 0.80

Verifica: Verificata

Verifica freccia finale (eq. 6.2.a, §6.4.1 e eq. 6.6, §6.4.3 CNR-DT 206/2007)

X	Comb.	unet,fin	L/250.00	Cs
m		m	m	
2.23	14-27	0.00	0.02	6.87

Verifica freccia finale dovuta ai soli carichi variabili (eq. 6.2.a, §6.4.1 e eq. 6.6, §6.4.3 CNR-DT 206/2007)

X	Comb.	u2,fin	L/200.00	Cs
m		m	m	
2.23	15-27	0.00	0.02	70.7

Verifica freccia iniziale dovuta ai soli carichi variabili (eq. 6.5, §6.4.3 CNR-DT 206/2007)

0 0		(1		
X	Comb.	u2,in	L/300.00	Cs
m		m	m	
2.23	15	0.00	0.01	47.1

Travata: 41 [1086, 1098]

L = 4.56m

Crit.Prog: Legno Arcareccio

u0 = 0.00m

kdef: 0.80

Verifica: Verificata

Verifica freccia finale (eg. 6.2.a, §6.4.1 e eg. 6.6, §6.4.3 CNR-DT 206/2007)

, 11 J. 11 J		01110 011111111111111111111111111111111		
X	Comb.	unet,fin	L/250.00	Cs
m		m	m	
2.28	15-27	0.00	0.02	5.99

Verifica freccia finale dovuta ai soli carichi variabili (eq. 6.2.a, §6.4.1 e eq. 6.6, §6.4.3 CNR-DT 206/2007)

$\frac{1}{2}$						
X	Comb.	u2,fin	L/200.00	Cs		
m		m	m			
2.28	15-27	0.00	0.02	62.5		

Verifica freccia iniziale dovuta ai soli carichi variabili (ea. 6.5, §6.4.3 CNR-DT 206/2007)

<u> </u>	rerifica freecia iniziale dovala di soli carieni varidolii (eq. 6.3, y6.4.3 CNR-D1 200/2007)					
	X	Comb.	u2,in	L/300.00	Cs	
	m		m	m		
	2.28	15	0.00	0.02	41.7	

Travata: 42 [1098, 1079]

L = 4.46m

Crit.Prog: Legno_Arcareccio

u0=0.00m

kdef: 0.80

Verifica: Verificata

Verifica freccia finale (eq. 6.2.a, §6.4.1 e eq. 6.6, §6.4.3 CNR-DT 206/2007)

X	Comb.	unet,fin	L/250.00	Cs
m		m	m	
2.23	14-27	0.00	0.02	6.73

Verifica freccia finale dovuta ai soli carichi variabili (eq. 6.2.a, §6.4.1 e eq. 6.6, §6.4.3 CNR-DT 206/2007)

X	Comb.	u2,fin	L/200.00	Cs
m		m	m	
2.23	15-27	0.00	0.02	70.2

religious fi ceeta illizate de rata di sett cartent randetti (eq. 6.5, 36.7.5 et il B1 200/2007)					
X	Comb.	u2,in	L/300.00	Cs	
m		m	m		
2.23	15	0.00	0.01	46.8	

Travata: 43 [1088, 1100]

L = 4.56m

Crit.Prog: Legno Arcareccio u0 = 0.00m kdef: 0.80 Verifica: Verificata

Verifica freccia finale (eq. 6.2.a, §6.4.1 e eq. 6.6, §6.4.3 CNR-DT 206/2007)

X	Comb.	unet,fin	L/250.00	Cs
m		m	m	
2.28	15-27	0.00	0.02	5.84

Verifica freccia finale dovuta ai soli carichi variabili (eq. 6.2.a, §6.4.1 e eq. 6.6, §6.4.3 CNR-DT 206/2007)

X	Comb.	u2,fin	L/200.00	Cs
m		m	m	
2.28	15-27	0.00	0.02	61.3

Verifica freccia iniziale dovuta ai soli carichi variabili (eq. 6.5, §6.4.3 CNR-DT 206/2007)

X	Comb.	u2,in	L/300.00	Cs
m		m	m	
2.28	15	0.00	0.02	40.9

Travata: 44 [1100 , 1077]

L = 4.46m

Crit.Prog: Legno_Arcareccio u0 = 0.00m kdef: 0.80 Verifica: Verificata

Verifica freccia finale (eq. 6.2.a, §6.4.1 e eq. 6.6, §6.4.3 CNR-DT 206/2007)

X	Comb.	unet,fin	L/250.00	Cs
m		m	m	
2.23	14-27	0.00	0.02	6.57

Verifica freccia finale dovuta ai soli carichi variabili (eq. 6.2.a, §6.4.1 e eq. 6.6, §6.4.3 CNR-DT 206/2007)

X	Comb.	u2,fin	L/200.00	Cs
m		m	m	
2.23	15-27	0.00	0.02	67.9

Verifica freccia iniziale dovuta ai soli carichi variabili (eq. 6.5, §6.4.3 CNR-DT 206/2007)

		\ 1	,	
x	Comb.	u2,in	L/300.00	Cs
m		m	m	
2.23	15	0.00	0.01	45.2

Travata: 45 [1087, 1099]

L=4.56m

Crit.Prog: Legno Arcareccio u0 = 0.00m kdef: 0.80 Verifica: Verificata

Verifica freccia finale (eq. 6.2.a, §6.4.1 e eq. 6.6, §6.4.3 CNR-DT 206/2007)

X	Comb.	unet,fin	L/250.00	Cs
m		m	m	
2.28	15-27	0.00	0.02	5.71

Verifica freccia finale dovuta ai soli carichi variabili (eq. 6.2.a, §6.4.1 e eq. 6.6, §6.4.3 CNR-DT 206/2007)

religious freeze de finale de vina de sont entre variable (eq. 6.2.d, 36.1.1 e eq. 6.6, 36.1.3 e e e e e e e e					
X	Comb.	u2,fin	L/200.00	Cs	
m		m	m		
2.28	15-27	0.00	0.02	59.5	

	respect j. eeeta miziate dorma di sott editem rantaem (eq. 610, 50, 10 estit z 1 2 60, 2007)							
ſ	v	Comb	u2 in	1./300.00	Cs			

X	Comb.	u2,in	L/300.00	Cs
m		m	m	
2.28	15	0.00	0.02	39.7

Travata: 46 [1099, 1078]

L = 4.46m

Crit.Prog: Legno_Arcareccio u0 = 0.00m kdef: 0.80 Verifica: Verificata

Verifica freccia finale (eq. 6.2.a, §6.4.1 e eq. 6.6, §6.4.3 CNR-DT 206/2007)

X	Comb.	unet,fin	L/250.00	Cs
m		m	m	
2.23	14-27	0.00	0.02	6.39

Verifica freccia finale dovuta ai soli carichi variabili (eq. 6.2.a, §6.4.1 e eq. 6.6, §6.4.3 CNR-DT 206/2007)

X	Comb.	u2,fin	L/200.00	Cs
m		m	m	
2.23	15-27	0.00	0.02	66.5

Verifica freccia iniziale dovuta ai soli carichi variabili (eq. 6.5, §6.4.3 CNR-DT 206/2007)

$\frac{1}{2}$						
x	Comb.	u2,in	L/300.00	Cs		
m		m	m			
2.23	15	0.00	0.01	44.4		

Pilastrata: 81 [1093, 1068]

L = 4.17m

Crit.Prog: Legno Arcareccio u0 = 0.00m kdef: 0.80 Verifica: Verificata

Verifica freccia finale (eq. 6.2.a, §6.4.1 e eq. 6.6, §6.4.3 CNR-DT 206/2007)

X	•	Comb.	unet,fin	L/250.00	Cs
m			m	m	
2.09		20-27	0.00	0.02	>100

Verifica freccia finale dovuta ai soli carichi variabili (eq. 6.2.a, §6.4.1 e eq. 6.6, §6.4.3 CNR-DT 206/2007)

0 0		\ 1	, 0	,
X	Comb.	u2,fin	L/200.00	Cs
m		m	m	
0.00	21-27	-0.00	0.02	>100

Verifica freccia iniziale dovuta ai soli carichi variabili (eq. 6.5, §6.4.3 CNR-DT 206/2007)

, yy					
X	Comb.	u2,in	L/300.00	Cs	
m		m	m		
0.00	21	-0.00	0.01	>100	

Pilastrata: 90 [0 , 1156]

L = 4.28m

Crit.Prog: Legno_Arcareccio u0 = 0.00m kdef: 0.80 Verifica: Verificata

Verifica freccia finale (eq. 6.2.a, §6.4.1 e eq. 6.6, §6.4.3 CNR-DT 206/2007)

X	Comb.	unet,fin	L/250.00	Cs
m		m	m	
2.14	21-27	0.00	0.02	>100

Verifica freccia finale dovuta ai soli carichi variabili (ea. 6.2 a. 86.4.1 e ea. 6.6. 86.4.3 CNR-DT 206/2007)

verifica freccia finale dovala di soli carichi variabili (eq. 6.2.a, 86.4.1 e eq. 6.6, 86.4.5 CNR-D1 200/2007)						
X	Comb.	u2,fin	L/200.00	Cs		
m		m	m			
0.00	21-27	-0.00	0.02	>100		

X	Comb.	u2,in	L/300.00	Cs
m		m	m	
0.00	21	-0.00	0.01	>100

Pilastrata: 92 [100 , 1256]

L = 4.28m

Crit.Prog: Legno_Arcareccio

u0 = 0.00m

kdef: 0.80

Verifica: Verificata

Verifica freccia finale (eq. 6.2.a, \$6.4.1 e eq. 6.6, \$6.4.3 CNR-DT 206/2007)

reityrear j. eeertar jiritatre (e	q. 0.2.00, 3 0.7.1 e eq. 0.0, 3	01110 01111 21 20012001)		
x	Comb.	unet,fin	L/250.00	Cs
m		m	m	
2.14	18-27	0.00	0.02	>100

Verifica freccia finale dovuta ai soli carichi variabili (eq. 6.2.a, §6.4.1 e eq. 6.6, §6.4.3 CNR-DT 206/2007)

X	Comb.	u2,fin	L/200.00	Cs
m		m	m	
0.00	21-27	-0.00	0.02	>100

Verifica freccia iniziale dovuta ai soli carichi variabili (eq. 6.5, §6.4.3 CNR-DT 206/2007)

· · · · · · · · · · · · · · · · · · ·				
X	Comb.	u2,in	L/300.00	Cs
m		m	m	
0.00	21	-0.00	0.01	>100

Pilastrata: 98 [1153 , 1094]

L = 4.17m

Crit.Prog: Legno Arcareccio

u0 = 0.00m

kdef: 0.80

Verifica: Verificata

Verifica freccia finale (eq. 6.2.a, §6.4.1 e eq. 6.6, §6.4.3 CNR-DT 206/2007)

religious frecestas filitaire (et	1. 0.2.a, 30.7.1 c cq. 0.0, 3	0.7.5 CITE DI 200/2007)		
X	Comb.	unet,fin	L/250.00	Cs
m		m	m	
2.09	20-27	0.00	0.02	>100

Verifica freccia finale dovuta ai soli carichi variabili (ea. 6.2.a. \\$6.4.1 e ea. 6.6. \\$6.4.3 CNR-DT 206/2007)

resigned freezed finale do value at soil custom variabili (eq. 0.2.a, 30.1.1 e eq. 0.0, 30.1.5 e111 D1 200/2007)					
X	Comb.	u2,fin	L/200.00	Cs	
m		m	m		
0.00	21-27	-0.00	0.02	>100	

Verifica freccia iniziale dovuta ai soli carichi variabili (eq. 6.5, §6.4.3 CNR-DT 206/2007)

X	Comb.	u2,in	L/300.00	Cs
m		m	m	
0.00	21	-0.00	0.01	>100

Travata: 48 [1088, 1112]

L = 1.00m

Crit.Prog: Legno_Arcareccio

u0 = 0.00m

kdef: 0.80

Verifica: Verificata

X	Comb.	unet,fin	L/250.00	Cs
m		m	m	
0.40	14-27	-0.00	0.00	94.0

X	Comb.	u2,fin	L/200.00	Cs
m		m	m	
0.40	15-27	-0.00	0.01	>100

X	Comb.	u2,in	L/300.00	Cs
m		m	m	
0.40	15	-0.00	0.00	>100

Travata: 49 [1087, 1111]

L = 1.00m

Crit.Prog: Legno Arcareccio u0 = 0.00m kdef: 0.80 Verifica: Verificata

Verifica freccia finale (eq. 6.2.a, §6.4.1 e eq. 6.6, §6.4.3 CNR-DT 206/2007)

7 of your filed filed filled (eq. 6.2.d, 30.7.1 e eq. 6.6, 30.7.5 errit B1 200/2007)						
X	Comb.	unet,fin	L/250.00	Cs		
m		m	m			
0.40	15-27	-0.00	0.00	70.9		

Verifica freccia finale dovuta ai soli carichi variabili (eq. 6.2.a, §6.4.1 e eq. 6.6, §6.4.3 CNR-DT 206/2007)

f_{ij}				
X	Comb.	u2,fin	L/200.00	Cs
m		m	m	
0.40	15-27	-0.00	0.01	>100

Verifica freccia iniziale dovuta ai soli carichi variabili (eq. 6.5, §6.4.3 CNR-DT 206/2007)

X	Comb.	u2,in	L/300.00	Cs
m		m	m	
0.40	15	-0.00	0.00	>100

Travata: 50 [1086 , 1110]

L = 1.00m

Crit.Prog: Legno Arcareccio u0 = 0.00m kdef: 0.80 Verifica: Verificata

Verifica freccia finale (eq. 6.2.a, §6.4.1 e eq. 6.6, §6.4.3 CNR-DT 206/2007)

X	Comb.	unet,fin	L/250.00	Cs
m		m	m	
0.40	14-27	-0.00	0.00	>100

Verifica freccia finale dovuta ai soli carichi variabili (eq. 6.2.a, §6.4.1 e eq. 6.6, §6.4.3 CNR-DT 206/2007)

X	Comb.	u2,fin	L/200.00	Cs
m		m	m	
0.30	15-27	-0.00	0.01	>100

Verifica freccia iniziale dovuta ai soli carichi variabili (eg. 6.5, §6.4.3 CNR-DT 206/2007)

religious si ceccia iniziate dovina di soti carieni variasti (eq. 5.5, 35.7.5 Civil Bi 200/2007)					
x	Comb.	u2,in	L/300.00	Cs	
m		m	m		
0.30	15	-0.00	0.00	>100	

Travata: 51 [1085, 1109]

L = 1.00m

Crit.Prog: Legno_Arcareccio u0 = 0.00m kdef: 0.80 Verifica: Verificata

<u>v erijica jreccia jinaie (eg</u>	j. 0.2.u, 80.4.1 e eg. 0.0, 8	0.4.3 CNR-D1 200/2007)		
X	Comb.	unet,fin	L/250.00	Cs
m		m	m	
0.40	14-27	-0.00	0.00	>100

X	Comb.	u2,fin	L/200.00	Cs
m		m	m	
0.30	15-27	-0.00	0.01	>100

Verifica freccia iniziale dovuta ai soli carichi variabili (eq. 6.5, §6.4.3 CNR-DT 206/2007)

X	Comb.	u2,in	L/300.00	Cs
m		m	m	
0.30	15	-0.00	0.00	>100

Travata: 52 [1084, 1108]

L = 1.00m

Crit.Prog: Legno_Arcareccio u0 = 0.00m kdef: 0.80 Verifica: Verificata

Verifica freccia finale (eq. 6.2.a, §6.4.1 e eq. 6.6, §6.4.3 CNR-DT 206/2007)

X	Comb.	unet,fin	L/250.00	Cs
m		m	m	
0.40	15-27	-0.00	0.00	72.0

Verifica freccia finale dovuta ai soli carichi variabili (eq. 6.2.a, §6.4.1 e eq. 6.6, §6.4.3 CNR-DT 206/2007)

	$\frac{1}{2}$					
X	Comb.	u2,fin	L/200.00	Cs		
m		m	m			
0.40	15-27	-0.00	0.01	>100		

Verifica freccia iniziale dovuta ai soli carichi variabili (ea. 6.5, §6.4.3 CNR-DT 206/2007)

<u>, , , , , , , , , , , , , , , , , , , </u>	yy					
X	Comb.	u2,in	L/300.00	Cs		
m		m	m			
0.40	15	-0.00	0.00	>100		

Travata: 53 [1083 , 1107]

L = 1.00m

Crit.Prog: Legno Arcareccio u0 = 0.00m kdef: 0.80 Verifica: Verificata

Verifica freccia finale (eq. 6.2.a, §6.4.1 e eq. 6.6, §6.4.3 CNR-DT 206/2007)

X	Comb.	unet,fin	L/250.00	Cs
m		m	m	
0.40	14-27	-0.00	0.00	82.8

Verifica freccia finale dovuta ai soli carichi variabili (eq. 6.2.a, §6.4.1 e eq. 6.6, §6.4.3 CNR-DT 206/2007)

X	Comb.	u2,fin	L/200.00	Cs
m		m	m	
0.40	15-27	-0.00	0.01	>100

Verifica freccia iniziale dovuta ai soli carichi variabili (eq. 6.5, §6.4.3 CNR-DT 206/2007)

3 3		(1 , 9		
X	Comb.	u2,in	L/300.00	Cs
m		m	m	
0.40	15	-0.00	0.00	>100

Travata: 54 [1074, 1104]

L=1.00m

Crit.Prog: Legno_Arcareccio u0 = 0.00m kdef: 0.80 Verifica: Verificata

X	Comb.	unet,fin	L/250.00	Cs
m		m	m	
0.30	18-27	-0.00	0.00	>100

X	Comb.	u2,fin	L/200.00	Cs
m		m	m	
0.50	15-27	0.00	0.01	>100

Verifica freccia iniziale dovuta ai soli carichi variabili (eq. 6.5, §6.4.3 CNR-DT 206/2007)

X	Comb.	u2,in	L/300.00	Cs
m		m	m	
0.50	15	0.00	0.00	>100

Travata: 55 [1075, 1105]

L=1.00m

Crit.Prog: Legno_Arcareccio u0 = 0.00m kdef: 0.80 Verifica: Verificata

Verifica freccia finale (eq. 6.2.a, §6.4.1 e eq. 6.6, §6.4.3 CNR-DT 206/2007)

X	Comb.	unet,fin	L/250.00	Cs
m		m	m	
0.30	16-27	-0.00	0.00	>100

Verifica freccia finale dovuta ai soli carichi variabili (eq. 6.2.a, §6.4.1 e eq. 6.6, §6.4.3 CNR-DT 206/2007)

X	Comb.	u2,fin	L/200.00	Cs
m		m	m	
0.70	15-27	0.00	0.01	>100

Verifica freccia iniziale dovuta ai soli carichi variabili (eq. 6.5, §6.4.3 CNR-DT 206/2007)

<u>, j j</u>						
X	Comb.	u2,in	L/300.00	Cs		
m		m	m			
0.70	15	0.00	0.00	>100		

Travata: 56 [1076, 1106]

L=1.00m

Crit.Prog: Legno_Arcareccio u0 = 0.00m kdef: 0.80 Verifica: Verificata

Verifica freccia finale (eq. 6.2.a, §6.4.1 e eq. 6.6, §6.4.3 CNR-DT 206/2007)

X	Comb.	unet,fin	L/250.00	Cs
m		m	m	
0.30	15-27	-0.00	0.00	>100

Verifica freccia finale dovuta ai soli carichi variabili (eq. 6.2.a, §6.4.1 e eq. 6.6, §6.4.3 CNR-DT 206/2007)

X	Comb.	u2,fin	L/200.00	Cs
m		m	m	
0.20	15-27	-0.00	0.01	>100

Verifica freccia iniziale dovuta ai soli carichi variabili (eq. 6.5, §6.4.3 CNR-DT 206/2007)

x	Comb.	u2,in	L/300.00	Cs
m		m	m	
0.20	15	-0.00	0.00	>100

Travata: 113 [1110 , 1111]

L = 1.42m

Crit.Prog: Legno_Arcareccio u0 = 0.00m kdef: 0.80 Verifica: Verificata

Verifica freccia finale (eq. 6.2.a, §6.4.1 e eq. 6.6, §6.4.3 CNR-DT 206/2007)

X	Comb.	unet,fin	L/250.00	Cs
m		m	m	
1.00	15-27	-0.00	0.01	52.7

Verifica freccia finale dovuta ai soli carichi variabili (eq. 6.2.a, §6.4.1 e eq. 6.6, §6.4.3 CNR-DT 206/2007)

X	Comb.	u2,fin	L/200.00	Cs
m		m	m	
1.00	15-27	-0.00	0.01	>100

Verifica freccia iniziale dovuta ai soli carichi variabili (eq. 6.5, §6.4.3 CNR-DT 206/2007)

X	Comb.	u2,in	L/300.00	Cs
m		m	m	
1.00	15	-0.00	0.00	>100

Travata: 114 [1111 , 1112]

L=1.43m

Crit.Prog: Legno_Arcareccio u0 = 0.00m kdef: 0.80 Verifica: Verificata

Verifica freccia finale (eq. 6.2.a, §6.4.1 e eq. 6.6, §6.4.3 CNR-DT 206/2007)

, et g. et g. et et g. et et g. et g	[• • • • • • • • • • • • • • • • • • •	01110 01111 = 1 = 0 01 = 0 0 1 7		
X	Comb.	unet,fin	L/250.00	Cs
m		m	m	
0.43	14-27	-0.00	0.01	66.0

Verifica freccia finale dovuta ai soli carichi variabili (eq. 6.2.a, §6.4.1 e eq. 6.6, §6.4.3 CNR-DT 206/2007)

X	Comb.	u2,fin	L/200.00	Cs
m		m	m	
0.43	15-27	-0.00	0.01	>100

Verifica freccia iniziale dovuta ai soli carichi variabili (ea. 6.5, §6.4.3 CNR-DT 206/2007)

verifica freecia iniziale dovala di soli carichi variabili (eq. 0.3, 30.4.3 CNR-D1 200/2007)					
X	Comb.	u2,in	L/300.00	Cs	
m		m	m		
0.43	15	-0.00	0.00	>100	

Travata: 115 [1112, 1104]

L = 1.42m

Crit.Prog: Legno_Arcareccio u0 = 0.00m kdef: 0.80 Verifica: Verificata

Verifica freccia finale (eq. 6.2.a, §6.4.1 e eq. 6.6, §6.4.3 CNR-DT 206/2007)

X	Comb.	unet,fin	L/250.00	Cs
m		m	m	
0.85	14-27	0.00	0.01	23.6

Verifica freccia finale dovuta ai soli carichi variabili (eq. 6.2.a, §6.4.1 e eq. 6.6, §6.4.3 CNR-DT 206/2007)

X	Comb.	u2,fin	L/200.00	Cs
m		m	m	
0.85	15-27	0.00	0.01	>100

X	Comb.	u2,in	L/300.00	Cs
m		m	m	
0.85	15	0.00	0.00	>100

<u>Travata: 116 [1105 , 1107]</u>

L = 1.42m

Crit.Prog: Legno_Arcareccio u0 = 0.00m kdef: 0.80 Verifica: Verificata

Verifica freccia finale (eq. 6.2.a, §6.4.1 e eq. 6.6, §6.4.3 CNR-DT 206/2007)

X	Comb.	unet,fin	L/250.00	Cs
m		m	m	
0.43	15-27	0.00	0.01	39.2

Verifica freccia finale dovuta ai soli carichi variabili (eq. 6.2.a, §6.4.1 e eq. 6.6, §6.4.3 CNR-DT 206/2007)

X	Comb.	u2,fin	L/200.00	Cs
m		m	m	
0.43	15-27	0.00	0.01	>100

Verifica freccia iniziale dovuta ai soli carichi variabili (eq. 6.5, §6.4.3 CNR-DT 206/2007)

X	Comb.	u2,in	L/300.00	Cs
m		m	m	
0.43	15	0.00	0.00	>100

Travata: 117 [1107, 1108]

L = 1.42m

Crit.Prog: Legno_Arcareccio u0 = 0.00m kdef: 0.80 Verifica: Verificata

Verifica freccia finale (eq. 6.2.a, §6.4.1 e eq. 6.6, §6.4.3 CNR-DT 206/2007)

X	Comb.	unet,fin	L/250.00	Cs
m		m	m	
1.00	15-27	-0.00	0.01	50.3

Verifica freccia finale dovuta ai soli carichi variabili (eq. 6.2.a, §6.4.1 e eq. 6.6, §6.4.3 CNR-DT 206/2007)

X	Comb.	u2,fin	L/200.00	Cs
m		m	m	
0.85	15-27	-0.00	0.01	>100

Verifica freccia iniziale dovuta ai soli carichi variabili (eq. 6.5, §6.4.3 CNR-DT 206/2007)

		\ 1 ' 0	,	
x	Comb.	u2,in	L/300.00	Cs
m		m	m	
0.85	15	-0.00	0.00	>100

Travata: 118 [1108, 1109]

L=1.42m

Crit.Prog: Legno Arcareccio u0 = 0.00m kdef: 0.80 Verifica: Verificata

Verifica freccia finale (eq. 6.2.a, §6.4.1 e eq. 6.6, §6.4.3 CNR-DT 206/2007)

X	Comb.	unet,fin	L/250.00	Cs
m		m	m	
0.43	14-27	-0.00	0.01	68.7

Verifica freccia finale dovuta ai soli carichi variabili (ea. 6.2.a. \\$6.4.1 e ea. 6.6. \\$6.4.3 CNR-DT 206/2007)

r er fred freecta finale do value at 50th carteti variabili (eq. 0.2.a, 50.7.1 e eq. 0.0, 50.7.5 erit D1 20072007)						
x	Comb.	u2,fin	L/200.00	Cs		
m		m	m			
0.43	15-27	-0.00	0.01	>100		

X	Comb.	u2,in	L/300.00	Cs

X	Comb.	u2,in	L/300.00	Cs
m		m	m	
0.43	15	-0.00	0.00	>100

Travata: 119 [1109, 1106]

L = 1.42m

Crit.Prog: Legno_Arcareccio u0 = 0.00m kdef: 0.80 Verifica: Verificata

Verifica freccia finale (eg. 6.2.a, §6.4.1 e eg. 6.6, §6.4.3 CNR-DT 206/2007)

X	Comb.	unet,fin	L/250.00	Cs
m		m	m	
0.85	14-27	0.00	0.01	54.5

Verifica freccia finale dovuta ai soli carichi variabili (eq. 6.2.a, §6.4.1 e eq. 6.6, §6.4.3 CNR-DT 206/2007)

X	Comb.	u2,fin	L/200.00	Cs
m		m	m	
0.85	15-27	0.00	0.01	>100

Verifica freccia iniziale dovuta ai soli carichi variabili (eq. 6.5, §6.4.3 CNR-DT 206/2007)

$\frac{1}{1}$						
X	Comb.	u2,in	L/300.00	Cs		
m		m	m			
0.85	15	0.00	0.00	>100		

Travata: 120 [1114, 1115]

L=1.42m

Crit.Prog: Legno Arcareccio u0 = 0.00m kdef: 0.80 Verifica: Verificata

Verifica freccia finale (eq. 6.2.a, §6.4.1 e eq. 6.6, §6.4.3 CNR-DT 206/2007)

X	Comb.	unet,fin	L/250.00	Cs
m		m	m	
0.57	14-27	0.00	0.01	24.1

Verifica freccia finale dovuta ai soli carichi variabili (eq. 6.2.a, §6.4.1 e eq. 6.6, §6.4.3 CNR-DT 206/2007)

0 0		\ 1	, 0	,
X	Comb.	u2,fin	L/200.00	Cs
m		m	m	
0.57	15-27	0.00	0.01	>100

Verifica freccia iniziale dovuta ai soli carichi variabili (eq. 6.5, §6.4.3 CNR-DT 206/2007)

X	Comb.	u2,in	L/300.00	Cs		
m		m	m			
0.57	15	0.00	0.00	>100		

Travata: 121 [1115, 1116]

L=1.43m

Crit.Prog: Legno_Arcareccio u0 = 0.00m kdef: 0.80 Verifica: Verificata

Verifica freccia finale (eq. 6.2.a, §6.4.1 e eq. 6.6, §6.4.3 CNR-DT 206/2007)

X	Comb.	unet,fin	L/250.00	Cs
m		m	m	
1.00	14-27	-0.00	0.01	64.0

Verifica freccia finale dovuta ai soli carichi variabili (eq. 6.2.a, §6.4.1 e eq. 6.6, §6.4.3 CNR-DT 206/2007)

X	Comb.	u2,fin	L/200.00	Cs
m		m	m	
1.00	15-27	-0.00	0.01	>100

X	Comb.	u2,in	L/300.00	Cs
m		m	m	
1.00	15	-0.00	0.00	>100

<u>Travata: 122 [1116 , 1117]</u>

 $\overline{L} = 1.42m$

Crit.Prog: Legno_Arcareccio u0 = 0.00m kdef: 0.80 Verifica: Verificata

Verifica freccia finale (eg. 6.2.a, §6.4.1 e eg. 6.6, §6.4.3 CNR-DT 206/2007)

r et great je ee et at grittatie (ee	1. 0. 2.0 , 30 e eq. 0.0, 3	01110 01111 21 20012001)		
X	Comb.	unet,fin	L/250.00	Cs
m		m	m	
0.43	15-27	-0.00	0.01	53.9

Verifica freccia finale dovuta ai soli carichi variabili (eq. 6.2.a, §6.4.1 e eq. 6.6, §6.4.3 CNR-DT 206/2007)

X	Comb.	u2,fin	L/200.00	Cs
m		m	m	
0.43	15-27	-0.00	0.01	>100

Verifica freccia iniziale dovuta ai soli carichi variabili (eq. 6.5, §6.4.3 CNR-DT 206/2007)

X	Comb.	u2,in	L/300.00	Cs
m		m	m	
0.43	15	-0.00	0.00	>100

Travata: 123 [1119 , 1120]

L=1.42m

Crit.Prog: Legno Arcareccio u0 = 0.00m kdef: 0.80 Verifica: Verificata

Verifica freccia finale (eq. 6.2.a, §6.4.1 e eq. 6.6, §6.4.3 CNR-DT 206/2007)

r crigica freceia finate (et	1. 0.2.a, 30.7.1 c cq. 0.0, 3	0.7.5 CITE DI 200/2007)		
X	Comb.	unet,fin	L/250.00	Cs
m		m	m	
0.57	14-27	0.00	0.01	54.1

Verifica freccia finale dovuta ai soli carichi variabili (ea. 6.2.a. \\$6.4.1 e ea. 6.6. \\$6.4.3 CNR-DT 206/2007)

r crifica freecia finate advitta at soit cartent variabili (eq. 6.2.a, \$6.7.1 e eq. 6.6, \$6.7.5 e etit D1 200/2007)						
X	Comb.	u2,fin	L/200.00	Cs		
m		m	m			
0.57	15-27	0.00	0.01	>100		

Verifica freccia iniziale dovuta ai soli carichi variabili (eq. 6.5, §6.4.3 CNR-DT 206/2007)

X	Comb.	u2,in	L/300.00	Cs
m		m	m	
0.57	15	0.00	0.00	>100

Travata: 124 [1120 , 1121]

L = 1.42m

Crit.Prog: Legno_Arcareccio u0 = 0.00m kdef: 0.80 Verifica: Verificata

X	Comb.	unet,fin	L/250.00	Cs
m		m	m	
1.00	14-27	-0.00	0.01	56.6

X	Comb.	u2,fin	L/200.00	Cs
m		m	m	
1.00	15-27	-0.00	0.01	>100

X	Comb.	u2,in	L/300.00	Cs
m		m	m	
1.00	15	-0.00	0.00	>100

Travata: 125 [1121 , 1122]

L = 1.42m

Crit.Prog: Legno_Arcareccio u0 = 0.00m kdef: 0.80 Verifica: Verificata

Verifica freccia finale (eq. 6.2.a, §6.4.1 e eq. 6.6, §6.4.3 CNR-DT 206/2007)

X	Comb.	unet,fin	L/250.00	Cs
m		m	m	
0.43	15-27	-0.00	0.01	63.7

Verifica freccia finale dovuta ai soli carichi variabili (eq. 6.2.a, §6.4.1 e eq. 6.6, §6.4.3 CNR-DT 206/2007)

		\ 1	, 0	,
x	Comb.	u2,fin	L/200.00	Cs
m		m	m	
0.43	15-27	-0.00	0.01	>100

Verifica freccia iniziale dovuta ai soli carichi variabili (eq. 6.5, §6.4.3 CNR-DT 206/2007)

X	Comb.	u2,in	L/300.00	Cs
m		m	m	
0.43	15	-0.00	0.00	>100

Travata: 126 [1122 , 1123]

L=1.42m

Crit.Prog: Legno_Arcareccio u0 = 0.00m kdef: 0.80 Verifica: Verificata

Verifica freccia finale (eq. 6.2.a, §6.4.1 e eq. 6.6, §6.4.3 CNR-DT 206/2007)

X	Comb.	unet,fin	L/250.00	Cs
m		m	m	
0.85	15-27	0.00	0.01	25.9

Verifica freccia finale dovuta ai soli carichi variabili (eq. 6.2.a, §6.4.1 e eq. 6.6, §6.4.3 CNR-DT 206/2007)

X	Comb.	u2,fin	L/200.00	Cs
m		m	m	
1.00	15-27	0.00	0.01	>100

Verifica freccia iniziale dovuta ai soli carichi variabili (eg. 6.5, §6.4.3 CNR-DT 206/2007)

renjied freedu inizidie dovida di soli editetti varidotti (eq. 0.3, 30.7.3 Cint Di 200/2007)					
x	Comb.	u2,in	L/300.00	Cs	
m		m	m		
1.00	15	0.00	0.00	>100	

Travata: 71 [1071 , 1114]

L = 1.00m

Crit.Prog: Legno_Arcareccio u0 = 0.00m kdef: 0.80 Verifica: Verificata

verifica freccia finale (eq. 0.2.a, \$0.4.1 e eq. 0.0, \$0.4.5 CNR-D1 200/2007)							
X	Comb.	unet,fin	L/250.00	Cs			
m		m	m				
0.30	20-27	-0.00	0.00	>100			

X	Comb.	u2,fin	L/200.00	Cs
m		m	m	
0.50	15-27	0.00	0.01	>100

Verifica freccia iniziale dovuta ai soli carichi variabili (eq. 6.5, §6.4.3 CNR-DT 206/2007)

X	Comb.	u2,in	L/300.00	Cs
m		m	m	
0.50	15	0.00	0.00	>100

Travata: 72 [1077 , 1115]

L = 1.00m

Crit.Prog: Legno_Arcareccio u0 = 0.00m

kdef: 0.80

Verifica: Verificata

Verifica freccia finale (eq. 6.2.a, §6.4.1 e eq. 6.6, §6.4.3 CNR-DT 206/2007)

x	Comb.	unet,fin	L/250.00	Cs
m		m	m	
0.40	15-27	-0.00	0.00	94.6

Verifica freccia finale dovuta ai soli carichi variabili (eq. 6.2.a, §6.4.1 e eq. 6.6, §6.4.3 CNR-DT 206/2007)

X	Comb.	u2,fin	L/200.00	Cs
m		m	m	
0.40	15-27	-0.00	0.01	>100

Verifica freccia iniziale dovuta ai soli carichi variabili (eq. 6.5, §6.4.3 CNR-DT 206/2007)

<u> </u>	$\frac{1}{2}$					
X	Comb.	u2,in	L/300.00	Cs		
m		m	m			
0.40	15	-0.00	0.00	>100		

Travata: 73 [1078, 1116]

L = 1.00m

Crit.Prog: Legno Arcareccio u0 = 0.00mkdef: 0.80 Verifica: Verificata

Verifica freccia finale (eq. 6.2.a, §6.4.1 e eq. 6.6, §6.4.3 CNR-DT 206/2007)

X	Comb.	unet,fin	L/250.00	Cs
m		m	m	
0.40	14-27	-0.00	0.00	70.4

Verifica freccia finale dovuta ai soli carichi variabili (eq. 6.2.a, §6.4.1 e eq. 6.6, §6.4.3 CNR-DT 206/2007)

X	Comb.	u2,fin	L/200.00	Cs
m		m	m	
0.40	15-27	-0.00	0.01	>100

Verifica freccia iniziale dovuta ai soli carichi variabili (eq. 6.5, §6.4.3 CNR-DT 206/2007)

X	Comb.	u2,in	L/300.00	Cs
m		m	m	
0.40	15	-0.00	0.00	>100

Travata: 74 [1079, 1117]

L=1.00m

kdef: 0.80 Verifica: Verificata Crit.Prog: Legno_Arcareccio u0 = 0.00m

X	Comb.	unet,fin	L/250.00	Cs
m		m	m	
0.40	15-27	-0.00	0.00	>100

X	Comb.	u2,fin	L/200.00	Cs
m		m	m	
0.30	15-27	-0.00	0.01	>100

Verifica freccia iniziale dovuta ai soli carichi variabili (eq. 6.5, §6.4.3 CNR-DT 206/2007)

X	Comb.	u2,in	L/300.00	Cs
m		m	m	
0.30	15	-0.00	0.00	>100

Travata: 75 [1073, 1119]

L = 1.00m

Crit.Prog: Legno_Arcareccio u0 = 0.00m kdef: 0.80 Verifica: Verificata

Verifica freccia finale (eq. 6.2.a, §6.4.1 e eq. 6.6, §6.4.3 CNR-DT 206/2007)

x	Comb.	unet,fin	L/250.00	Cs
m		m	m	
0.30	14-27	-0.00	0.00	>100

Verifica freccia finale dovuta ai soli carichi variabili (eq. 6.2.a, §6.4.1 e eq. 6.6, §6.4.3 CNR-DT 206/2007)

X	Comb.	u2,fin	L/200.00	Cs
m		m	m	
0.20	15-27	-0.00	0.01	>100

Verifica freccia iniziale dovuta ai soli carichi variabili (eq. 6.5, §6.4.3 CNR-DT 206/2007)

X	Comb.	u2,in	L/300.00	Cs
m		m	m	
0.20	15	-0.00	0.00	>100

Travata: 76 [1080 , 1120]

 $\overline{L=1.00m}$

Crit.Prog: Legno_Arcareccio u0 = 0.00m kdef: 0.80 Verifica: Verificata

Verifica freccia finale (eg. 6.2.a, §6.4.1 e eg. 6.6, §6.4.3 CNR-DT 206/2007)

reigiear j. eeerar jiritare (ee	1. 3.2.6, 33 6 64. 3.3, 3	01116 61111 21 20012001)		
X	Comb.	unet,fin	L/250.00	Cs
m		m	m	
0.40	15-27	-0.00	0.00	>100

Verifica freccia finale dovuta ai soli carichi variabili (ea. 6.2.a. \\$6.4.1 e ea. 6.6. \\$6.4.3 CNR-DT 206/2007)

reflect freezit finale do villa di son carteni variaoni (eq. 0.2.a, 30.7.1 e eq. 0.0, 30.7.5 e en Di 20072007)						
X	Comb.	u2,fin	L/200.00	Cs		
m		m	m			
0.30	15-27	-0.00	0.01	>100		

Verifica freccia iniziale dovuta ai soli carichi variabili (eq. 6.5, §6.4.3 CNR-DT 206/2007)

X	Comb.	u2,in	L/300.00	Cs
m		m	m	
0.30	15	-0.00	0.00	>100

Travata: 77 [1081 , 1121]

 $\overline{L} = 1.00m$

Crit.Prog: Legno Arcareccio

u0 = 0.00m

kdef: 0.80

Verifica: Verificata

Verifica freccia finale (eq. 6.2.a, §6.4.1 e eq. 6.6, §6.4.3 CNR-DT 206/2007)

X	Comb.	unet,fin	L/250.00	Cs
m		m	m	
0.40	14-27	-0.00	0.00	69.3

Verifica freccia finale dovuta ai soli carichi variabili (eq. 6.2.a, §6.4.1 e eq. 6.6, §6.4.3 CNR-DT 206/2007)

X	Comb.	u2,fin	L/200.00	Cs
m		m	m	
0.40	15-27	-0.00	0.01	>100

Verifica freccia iniziale dovuta ai soli carichi variabili (eq. 6.5, §6.4.3 CNR-DT 206/2007)

0 0		(1		
X	Comb.	u2,in	L/300.00	Cs
m		m	m	
0.40	15	-0.00	0.00	>100

Travata: 78 [1082 , 1122]

L=1.00m

Crit.Prog: Legno_Arcareccio

u0 = 0.00m

kdef: 0.80

Verifica: Verificata

Verifica freccia finale (eq. 6.2.a, §6.4.1 e eq. 6.6, §6.4.3 CNR-DT 206/2007)

X	Comb.	unet,fin	L/250.00	Cs
m		m	m	
0.40	15-27	-0.00	0.00	94.7

Verifica freccia finale dovuta ai soli carichi variabili (eq. 6.2.a, §6.4.1 e eq. 6.6, §6.4.3 CNR-DT 206/2007)

X	Comb.	u2,fin	L/200.00	Cs	
m		m	m		
0.40	15-27	-0.00	0.01	>100	

Verifica freccia iniziale dovuta ai soli carichi variabili (ea. 6.5, §6.4.3 CNR-DT 206/2007)

verifica freecia iniziate dovata di soti carichi varidotti (eq. 0.3, 30.4.5 CNR-D1 200/2007)					
x	Comb.	u2,in	L/300.00	Cs	
m		m	m		
0.40	15	-0.00	0.00	>100	

Travata: 79 [1072, 1123]

L = 1.16m

Crit.Prog: Legno_Arcareccio

u0=0.00m

kdef: 0.80

Verifica: Verificata

Verifica freccia finale (eq. 6.2.a, §6.4.1 e eq. 6.6, §6.4.3 CNR-DT 206/2007)

X	Comb.	unet,fin	L/250.00	Cs
m		m	m	
0.35	20-27	-0.00	0.00	>100

Verifica freccia finale dovuta ai soli carichi variabili (eq. 6.2.a, §6.4.1 e eq. 6.6, §6.4.3 CNR-DT 206/2007)

X	Comb.	u2,fin	L/200.00	Cs
m		m	m	
0.70	15-27	0.00	0.01	>100

r er ij tea ji eeeta tittziate	er great freeze unitative de vivid de sont en tent variable (eq. 6.5, 36.7.5 ext. Dr 200/2007)						
X	Comb.	u2,in	L/300.00	Cs			
m		m	m				
0.70	15	0.00	0.00	>100			

Travata: 80 [1092, 1076]

L = 4.56m

Crit.Prog: Legno Arcareccio u0 = 0.00m kdef: 0.80 Verifica: Verificata

Verifica freccia finale (eq. 6.2.a, §6.4.1 e eq. 6.6, §6.4.3 CNR-DT 206/2007)

X	Comb.	unet,fin	L/250.00	Cs
m		m	m	
2.73	14-27	0.00	0.02	7.30

Verifica freccia finale dovuta ai soli carichi variabili (eq. 6.2.a, §6.4.1 e eq. 6.6, §6.4.3 CNR-DT 206/2007)

X	Comb.	u2,fin	L/200.00	Cs
m		m	m	
2.73	15-27	0.00	0.02	75.0

Verifica freccia iniziale dovuta ai soli carichi variabili (eq. 6.5, §6.4.3 CNR-DT 206/2007)

X	Comb.	u2,in	L/300.00	Cs
m		m	m	
2.73	15	0.00	0.02	50.0

Travata: 82 [1093 , 1071]

L = 4.46m

Crit.Prog: Legno_Arcareccio u0 = 0.00m kdef: 0.80 Verifica: Verificata

Verifica freccia finale (eq. 6.2.a, §6.4.1 e eq. 6.6, §6.4.3 CNR-DT 206/2007)

X	Comb.	unet,fin	L/250.00	Cs
m		m	m	
2.67	14-27	0.00	0.02	16.9

Verifica freccia finale dovuta ai soli carichi variabili (eq. 6.2.a, §6.4.1 e eq. 6.6, §6.4.3 CNR-DT 206/2007)

X	Comb.	u2,fin	L/200.00	Cs
m		m	m	
2.67	15-27	0.00	0.02	>100

Verifica freccia iniziale dovuta ai soli carichi variabili (eq. 6.5, §6.4.3 CNR-DT 206/2007)

		\ 1 ' 0	,	
x	Comb.	u2,in	L/300.00	Cs
m		m	m	
2.67	15	0.00	0.01	>100

Travata: 83 [1079, 1073]

L=1.42m

Crit.Prog: Legno Arcareccio u0 = 0.00m kdef: 0.80 Verifica: Verificata

Verifica freccia finale (eq. 6.2.a, §6.4.1 e eq. 6.6, §6.4.3 CNR-DT 206/2007)

X	Comb.	unet,fin	L/250.00	Cs
m		m	m	
0.28	15-27	0.00	0.01	>100

Verifica freccia finale dovuta ai soli carichi variabili (ea. 6.2.a. \\$6.4.1 e ea. 6.6. \\$6.4.3 CNR-DT 206/2007)

reflect freetit finale do value at soit cartell variabili (eq. 0.2.a, 30.7.1 e eq. 0.0, 30.7.5 e ett. D1 20072007)						
x	Comb.	u2,fin	L/200.00	Cs		
m		m	m			
0.28	15-27	0.00	0.01	>100		

X	Comb.	u2,in	L/300.00	Cs
			_,	

X	Comb.	u2,in	L/300.00	Cs
m		m	m	
0.28	15	0.00	0.00	>100

Travata: 84 [1098, 1092]

L = 1.42m

Crit.Prog: Legno_Arcareccio u0 = 0.00m kdef: 0.80 Verifica: Verificata

Verifica freccia finale (eg. 6.2.a, §6.4.1 e eg. 6.6, §6.4.3 CNR-DT 206/2007)

X	Comb.	unet,fin	L/250.00	Cs
m		m	m	
0.85	14-27	-0.00	0.01	8.34

Verifica freccia finale dovuta ai soli carichi variabili (eq. 6.2.a, §6.4.1 e eq. 6.6, §6.4.3 CNR-DT 206/2007)

X	Comb.	u2,fin	L/200.00	Cs
m		m	m	
0.85	15-27	-0.00	0.01	92.4

Verifica freccia iniziale dovuta ai soli carichi variabili (eq. 6.5, §6.4.3 CNR-DT 206/2007)

<u>, , , , , , , , , , , , , , , , , , , </u>	(-1, -1, -1, -1, -1, -1, -1, -1, -1, -1,					
X	Comb.	u2,in	L/300.00	Cs		
m		m	m			
0.85	15	-0.00	0.00	61.6		

Travata: 85 [1086, 1076]

L=1.42m

Crit.Prog: Legno Arcareccio u0 = 0.00m kdef: 0.80 Verifica: Verificata

Verifica freccia finale (eq. 6.2.a, §6.4.1 e eq. 6.6, §6.4.3 CNR-DT 206/2007)

X	,	Comb.	unet,fin	L/250.00	Cs
m			m	m	
0.28		15-27	0.00	0.01	>100

Verifica freccia finale dovuta ai soli carichi variabili (eq. 6.2.a, §6.4.1 e eq. 6.6, §6.4.3 CNR-DT 206/2007)

		\ 1	, 0	,
X	Comb.	u2,fin	L/200.00	Cs
m		m	m	
0.28	15-27	0.00	0.01	>100

Verifica freccia iniziale dovuta ai soli carichi variabili (eq. 6.5, §6.4.3 CNR-DT 206/2007)

	= yy						
x	Comb.	u2,in	L/300.00	Cs			
m		m	m				
0.28	15	0.00	0.00	>100			

Travata: 127 [1117, 1119]

L=1.42m

Crit.Prog: Legno_Arcareccio u0 = 0.00m kdef: 0.80 Verifica: Verificata

Verifica freccia finale (eq. 6.2.a, §6.4.1 e eq. 6.6, §6.4.3 CNR-DT 206/2007)

x	Comb.	unet,fin	L/250.00	Cs
m		m	m	
0.85	15-27	0.00	0.01	90.8

Verifica freccia finale dovuta ai soli carichi variabili (eq. 6.2.a, §6.4.1 e eq. 6.6, §6.4.3 CNR-DT 206/2007)

X	Comb.	u2,fin	L/200.00	Cs
m		m	m	
0.85	15-27	0.00	0.01	>100

X	Comb.	u2,in	L/300.00	Cs
m		m	m	
0.85	15	0.00	0.00	>100

Travata: 128 [1110, 1106]

 $\overline{L} = 1.42m$

Crit.Prog: Legno_Arcareccio u0 = 0.00m kdef: 0.80 Verifica: Verificata

Verifica freccia finale (eg. 6.2.a, §6.4.1 e eg. 6.6, §6.4.3 CNR-DT 206/2007)

reitytett j. eeetti jiittite (ee	[· o.z.e, 5 o e eq. o.o, 5	01110 01111 21 20012001)		
X	Comb.	unet,fin	L/250.00	Cs
m		m	m	
0.85	15-27	0.00	0.01	97.2

Verifica freccia finale dovuta ai soli carichi variabili (eq. 6.2.a, §6.4.1 e eq. 6.6, §6.4.3 CNR-DT 206/2007)

X	Comb.	u2,fin	L/200.00	Cs
m		m	m	
0.85	15-27	0.00	0.01	>100

Verifica freccia iniziale dovuta ai soli carichi variabili (eq. 6.5, §6.4.3 CNR-DT 206/2007)

(-4,, 5,,,,,,					
X	Comb.	u2,in	L/300.00	Cs	
m		m	m		
0.85	15	0.00	0.00	>100	

Travata: 88 [1072 , 1094]

L = 4.46m

Crit.Prog: Legno Arcareccio u0 = 0.00m kdef: 0.80 Verifica: Verificata

Verifica freccia finale (eq. 6.2.a, §6.4.1 e eq. 6.6, §6.4.3 CNR-DT 206/2007)

r crigica freceia finate (et	1. 0.2.a, 30.7.1 c cq. 0.0, 3	0.1.5 CITE DI 200/2007)		
X	Comb.	unet,fin	L/250.00	Cs
m		m	m	
2.23	14-27	0.00	0.02	14.6

Verifica freccia finale dovuta ai soli carichi variabili (eq. 6.2.a, §6.4.1 e eq. 6.6, §6.4.3 CNR-DT 206/2007)

X	Comb.	u2,fin	L/200.00	Cs
m		m	m	
2.23	15-27	0.00	0.02	>100

Verifica freccia iniziale dovuta ai soli carichi variabili (eq. 6.5, §6.4.3 CNR-DT 206/2007)

X	Comb.	u2,in	L/300.00	Cs
m		m	m	
2.23	15	0.00	0.01	>100

Travata: 89 [0, 1075]

L=2.50m

Crit.Prog: Legno_Arcareccio u0 = 0.00m kdef: 0.80 Verifica: Verificata

X	Comb.	unet,fin	L/250.00	Cs
m		m	m	
1.25	14-27	0.00	0.01	30.8

X	Comb.	u2,fin	L/200.00	Cs
m		m	m	
1.25	15-27	0.00	0.01	>100

X	Comb.	u2,in	L/300.00	Cs
m		m	m	
1.25	15	0.00	0.01	>100

Travata: 93 [1075, 1175]

L = 1.45m

Crit.Prog: Legno Arcareccio u0 = 0.00m kdef: 0.80 Verifica: Verificata

Verifica freccia finale (eq. 6.2.a, §6.4.1 e eq. 6.6, §6.4.3 CNR-DT 206/2007)

X	Comb.	unet,fin	L/250.00	Cs
m		m	m	
0.72	15-27	-0.00	0.01	49.9

Verifica freccia finale dovuta ai soli carichi variabili (eq. 6.2.a, §6.4.1 e eq. 6.6, §6.4.3 CNR-DT 206/2007)

<u> </u>	$\frac{1}{2}$					
X	Comb.	u2,fin	L/200.00	Cs		
m		m	m			
0.72	15-27	-0.00	0.01	>100		

Verifica freccia iniziale dovuta ai soli carichi variabili (eq. 6.5, §6.4.3 CNR-DT 206/2007)

X	Comb.	u2,in	L/300.00	Cs
m		m	m	
0.72	15	-0.00	0.00	>100

Travata: 94 [1175, 100]

L=2.50m

Crit.Prog: Legno Arcareccio u0 = 0.00m kdef: 0.80 Verifica: Verificata

Verifica freccia finale (eq. 6.2.a, §6.4.1 e eq. 6.6, §6.4.3 CNR-DT 206/2007)

x	_1	Comb.	unet,fin	L/250.00	Cs
m			m	m	
1.50		14-27	0.00	0.01	46.8

Verifica freccia finale dovuta ai soli carichi variabili (eq. 6.2.a, §6.4.1 e eq. 6.6, §6.4.3 CNR-DT 206/2007)

X	Comb.	u2,fin	L/200.00	Cs
m		m	m	
1.25	15-27	0.00	0.01	>100

Verifica freccia iniziale dovuta ai soli carichi variabili (ea. 6.5, §6.4.3 CNR-DT 206/2007)

reflica freeda iniziale advata al son carteni variabili (eq. 6.3, 36.4.5 Civit DI 200/2007)					
x	Comb.	u2,in	L/300.00	Cs	
m		m	m		
1.25	15	0.00	0.01	>100	

Travata: 95 [100, 0]

 $\overline{L} = 1.45m$

Crit.Prog: Legno_Arcareccio u0 = 0.00m kdef: 0.80 Verifica: Verificata

_	verijica freccia finale (eg	j. 0.2.u, 80.4.1 e eg. 0.0, 8	0.4.3 CNK-D1 200/200/)		
	X	Comb.	unet,fin	L/250.00	Cs
	m		m	m	
	0.72	15-27	-0.00	0.01	69.9

Verifica freccia finale dovuta ai soli carichi variabili (eq. 6.2.a, §6.4.1 e eq. 6.6, §6.4.3 CNR-DT 206/2007)

X	Comb.	u2,fin	L/200.00	Cs
m		m	m	
0.72	15-27	-0.00	0.01	>100

Verifica freccia iniziale dovuta ai soli carichi variabili (eq. 6.5, §6.4.3 CNR-DT 206/2007)

X	Comb.	u2,in	L/300.00	Cs
m		m	m	
0.72	15	-0.00	0.00	>100

Travata: 96 [1175, 1275]

L = 1.00m

Crit.Prog: Legno_Arcareccio u0 = 0.00m

m kdef: 0.80

Verifica: Verificata

Verifica freccia finale (eq. 6.2.a, §6.4.1 e eq. 6.6, §6.4.3 CNR-DT 206/2007)

X	Comb.	unet,fin	L/250.00	Cs
m		m	m	
0.40	15-27	-0.00	0.00	>100

Verifica freccia finale dovuta ai soli carichi variabili (eq. 6.2.a, §6.4.1 e eq. 6.6, §6.4.3 CNR-DT 206/2007)

		\ 1	, 0	,
X	Comb.	u2,fin	L/200.00	Cs
m		m	m	
0.30	15-27	-0.00	0.01	>100

Verifica freccia iniziale dovuta ai soli carichi variabili (ea. 6.5, §6.4.3 CNR-DT 206/2007)

<u> </u>	$\frac{1}{2}$					
X	Comb.	u2,in	L/300.00	Cs		
m		m	m			
0.30	15	-0.00	0.00	>100		

Travata: 131 [1275, 1105]

L = 1.45m

Crit.Prog: Legno Arcareccio

u0 = 0.00m

kdef: 0.80

Verifica: Verificata

Verifica freccia finale (eq. 6.2.a, §6.4.1 e eq. 6.6, §6.4.3 CNR-DT 206/2007)

X	Comb.	unet,fin	L/250.00	Cs
m		m	m	
0.29	18-27	-0.00	0.01	>100

Verifica freccia finale dovuta ai soli carichi variabili (eq. 6.2.a, §6.4.1 e eq. 6.6, §6.4.3 CNR-DT 206/2007)

X	Comb.	u2,fin	L/200.00	Cs
m		m	m	
0.87	15-27	0.00	0.01	>100

Verifica freccia iniziale dovuta ai soli carichi variabili (eq. 6.5, §6.4.3 CNR-DT 206/2007)

X	Comb.	u2,in	L/300.00	Cs
m		m	m	
0.87	15	0.00	0.00	>100

Travata: 1 [100, 200]

L=0.60m

Crit.Prog: Legno_Arcareccio u0 = 0.00m kdef: 0.80 Verifica: Verificata

Verifica freccia finale (eq. 6.2.a, §6.4.1 e eq. 6.6, §6.4.3 CNR-DT 206/2007)

X	Comb.	unet,fin	L/250.00	Cs
m		m	m	
0.24	15-27	-0.00	0.00	>100

Verifica freccia finale dovuta ai soli carichi variabili (eq. 6.2.a, §6.4.1 e eq. 6.6, §6.4.3 CNR-DT 206/2007)

X	Comb.	u2,fin	L/200.00	Cs
m		m	m	
0.24	15-27	-0.00	0.00	>100

Verifica freccia iniziale dovuta ai soli carichi variabili (eq. 6.5, §6.4.3 CNR-DT 206/2007)

X	Comb.	u2,in	L/300.00	Cs
m		m	m	
0.24	15	-0.00	0.00	>100

Travata: 3 [1275, 1375]

L = 0.60m

Crit.Prog: Legno_Arcareccio u0 = 0.00m kdef: 0.80 Verifica: Verificata

Verifica freccia finale (eq. 6.2.a, §6.4.1 e eq. 6.6, §6.4.3 CNR-DT 206/2007)

X	Comb.	unet,fin	L/250.00	Cs
m		m	m	
0.24	15-27	-0.00	0.00	>100

Verifica freccia finale dovuta ai soli carichi variabili (eq. 6.2.a, §6.4.1 e eq. 6.6, §6.4.3 CNR-DT 206/2007)

X	Comb.	u2,fin	L/200.00	Cs
m		m	m	
0.24	15-27	-0.00	0.00	>100

Verifica freccia iniziale dovuta ai soli carichi variabili (eq. 6.5, §6.4.3 CNR-DT 206/2007)

<u>, , , , , , , , , , , , , , , , , , , </u>		10111 (14. 011) 3011110 011111		
X	Comb.	u2,in	L/300.00	Cs
m		m	m	
0.24	15	-0.00	0.00	>100

Travata: 4 [1375, 1275]

L=1.00m

Crit.Prog: Legno_Arcareccio u0 = 0.00m kdef: 0.80 Verifica: Verificata

Verifica freccia finale (eg. 6.2.a, §6.4.1 e eg. 6.6, §6.4.3 CNR-DT 206/2007)

reigieurgi eeertar grintaire (ee	[· o.z.a, 5 o e eq. o.o, 5	01110 01111 21 20012001)		
X	Comb.	unet,fin	L/250.00	Cs
m		m	m	
0.70	14-27	-0.00	0.00	>100

Verifica freccia finale dovuta ai soli carichi variabili (ea. 6.2.a. \\$6.4.1 e ea. 6.6. \\$6.4.3 CNR-DT 206/2007)

7 01	ijica ji eccia jinaic ao	viita ai soit cartetti vartae	nn (eq. 0.2.a, 30.7.1 e eq.	0.0, 30.7.3 CITTE DI 2007	2007)
	X	Comb.	u2,fin	L/200.00	Cs
	m		m	m	
	0.70	15-27	-0.00	0.01	>100

Verifica freccia iniziale dovuta ai soli carichi variabili (eq. 6.5, §6.4.3 CNR-DT 206/2007)

X	Comb.	Comb. u2,in L/300.0		Cs
m		m	m	
0.70	15	-0.00	0.00	>100

Travata: 5 [1275, 200]

L = 2.50m

Crit.Prog: Legno_Arcareccio u0 = 0.00m kdef: 0.80 Verifica: Verificata

Verifica freccia finale (eq. 6.2.a, §6.4.1 e eq. 6.6, §6.4.3 CNR-DT 206/2007)

X	Comb.	unet,fin	L/250.00	Cs
m		m	m	
1.25	14-27	0.00	0.01	20.3

Verifica freccia finale dovuta ai soli carichi variabili (eq. 6.2.a, §6.4.1 e eq. 6.6, §6.4.3 CNR-DT 206/2007)

X	Comb.	u2,fin	L/200.00	Cs
m		m	m	
1.25	15-27	0.00	0.01	>100

Verifica freccia iniziale dovuta ai soli carichi variabili (eq. 6.5, §6.4.3 CNR-DT 206/2007)

		1	/	
x	Comb.	u2,in	L/300.00	Cs
m		m	m	
1.25	15	0.00	0.01	>100

Comune di Santa Maria del Cedro

Provincia di Cosenza

<u>PROGETTO:</u> REALIZZAZIONE NUVO EDIFICIO PUBBLICO, DESTINATO A SCUOLA CON STRUTTURA IN LEGNO NEL COMUNE DI SANTA MARIA DEL CEDRO (CS). CLASSE D'USO DELLA COSTRUZIONE 3.

<u>PRATICA:</u> REALIZZAZIONE DEGLI INTERVENTI DIRETTI ALL'AMPLIAMENTO DELLA SCUOLA ELEMENTARE UBICATA IN VIA ORSOMARSO DEL COMUNE DI SANTA MARIA DEL CEDRO FRAZIONE MARCELLINA.

Il Committente

Comune di Santa Maria del Cedro

via Nazionale n.16 87020, Santa Maria del Cedro (CS) Tel. 0.985/5727 - C.F. 00433700788

Il Responsabile del Servizio

Dott. Ing. Giuseppe Durante

I Progettisti e DD.LL.

Dott. Geom. Giuseppe Riccetti

Geom. Carmine Covucci

Data: novembre 2016

Tavola:	
Integrazione	
D4.1	

Elaborato:

Verifica agli stati limite di danno

Scala:

Visti e Pareri :

Aggiornamenti:

Verifica Degli Spostamenti Relativi (SLD)

Scenario di calcolo : Set_NT_SLV_SLD_A2_STR/GEO

Interp.	Comb.	ηXv	ηXh	ηYv	ηYh	Nodo1	Nodo2	η	ηAmm	Cs
		m	m	m	m			m	m	
0-1	(28+29)-II-2	0.00	0.00	0.00	0.01	1052	1071	0.01	0.04	3.71
0-1	(28+29)-II-2	0.00	0.00	0.00	0.01	1053	1072	0.01	0.04	4.42
0-1	(28+29)-II-2	0.00	0.00	0.00	0.01	1054	1073	0.01	0.04	2.77
0-1	(28+29)-I-3	0.00	0.01	0.00	0.00	1055	1074	0.01	0.04	3.70
0-1	(28+29)-I-3	0.00	0.01	0.00	0.00	1056	1075	0.01	0.04	3.70
0-1	(28+29)-II-2	0.00	0.00	0.00	0.01	1057	1076	0.01	0.04	3.12
0-1	(28+29)-II-2	0.00	0.00	0.00	0.01	1058	1084	0.01	0.04	3.39
0-1	(28+29)-II-2	0.00	0.00	0.00	0.01	1059	1087	0.01	0.04	3.28
0-1	(28+29)-II-2	0.00	0.00	0.00	0.01	1060	1078	0.01	0.04	2.91
0-1	(28+29)-II-2	0.00	0.00	0.00	0.01	1061	1081	0.01	0.04	3.01
0-1	(28+29)-I-3	0.00	0.02	0.00	0.00	1068	1093	0.02	0.04	2.55
0-1	(28+29)-I-3	0.00	0.02	0.00	0.00	1069	1092	0.02	0.04	2.55
0-1	(28+29)-I-3	0.00	0.02	0.00	0.00	1153	1094	0.02	0.04	2.55
0-1	(28+29)-I-3	0.00	0.01	0.00	0.00	1156	0	0.01	0.04	3.11
0-1	(28+29)-I-3	0.00	0.01	0.00	0.00	1156	1175	0.01	0.04	3.69
0-1	(28+29)-I-3	0.00	0.01	0.00	0.00	1256	100	0.01	0.04	3.11
				Minin	no					
0-1	(28+29)-I-3	0.00	0.02	0.00	0.00	1069	1092	0.02	0.04	2.55

Comune di Santa Maria del Cedro

Provincia di Cosenza

<u>PROGETTO:</u> REALIZZAZIONE NUVO EDIFICIO PUBBLICO, DESTINATO A SCUOLA CON STRUTTURA IN LEGNO NEL COMUNE DI SANTA MARIA DEL CEDRO (CS). CLASSE D'USO DELLA COSTRUZIONE 3.

<u>PRATICA:</u> REALIZZAZIONE DEGLI INTERVENTI DIRETTI ALL'AMPLIAMENTO DELLA SCUOLA ELEMENTARE UBICATA IN VIA ORSOMARSO DEL COMUNE DI SANTA MARIA DEL CEDRO FRAZIONE MARCELLINA.

Il Committente

Comune di Santa Maria del Cedro

via Nazionale n.16 87020, Santa Maria del Cedro (CS) Tel. 0.985/5727 - C.F. 00433700788

Il Responsabile del Servizio

Dott. Ing. Giuseppe Durante

I Progettisti e DD.LL.

Dott. Geom. Giuseppe Riccetti

Geom. Carmine Covucci

Data: novembre 2016

Tavola:	
Integrazione	•
D4.2	

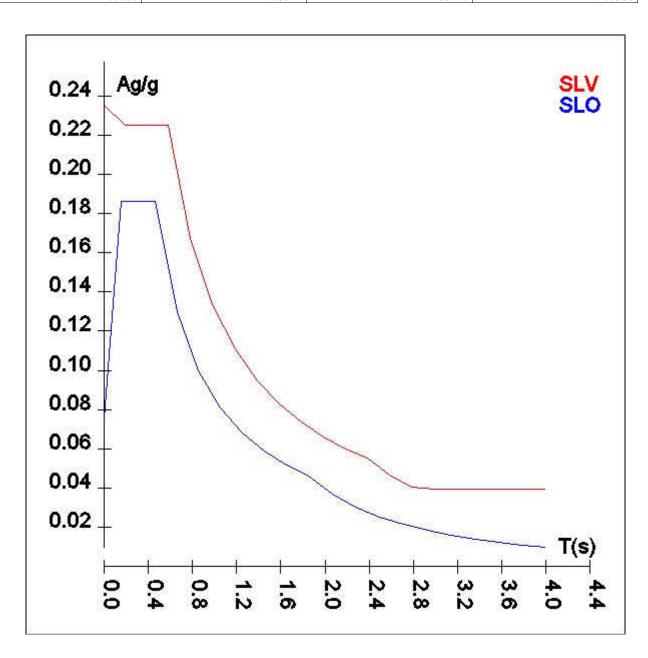
Elaborato:

Verifica agli stati limite di operatività

Scala:

Visti e Pareri :

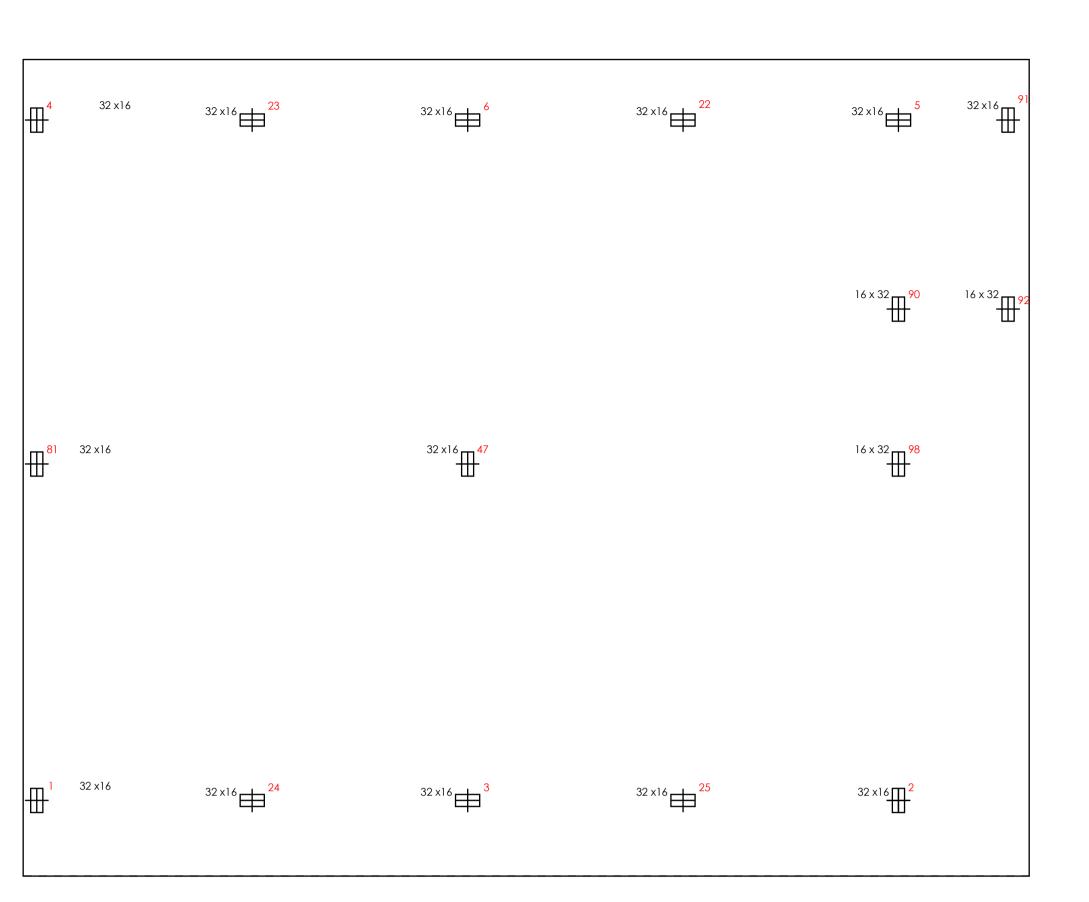
Aggiornamenti:

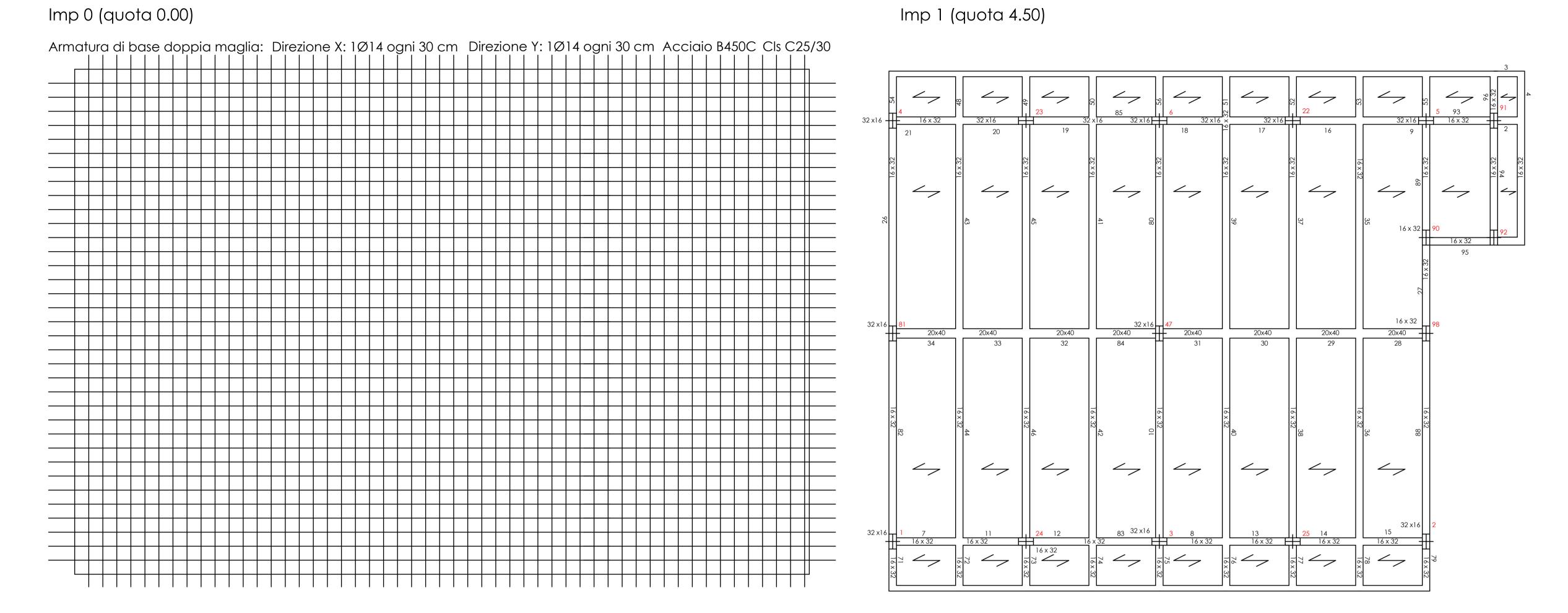

Spettri di risposta

<u>Spettro :SpettroNT</u>
Il calcolo degli spettri e del fattore di struttura sono stati calcolati per la seguente tipologia di terreno e struttura

Vita della struttura	
т:	Opere ordinarie (50-100) 50 - 100
Tipo	anni
Vita nominale(anni)	75.0
Classe d'uso	Classe III
Coefficiente d'uso	1.500
Periodo di riferimento(anni)	112.500
Stato limite di esercizio - SLO	PVR=81.0%
Stato limite ultimo - SLV	PVR=10.0%
Periodo di ritorno SLO(anni)	TR=67.7
Periodo di ritorno SLV(anni)	TR=1067.8
Parametri del sito	
Comune	Santa Maria del Cedro - (CS)
Longitudine	15.8276
Latitudine	39.7689
Id reticolo del sito	37887-37665-37664-37886
Valori di riferimento del sito	
Ag/g(TR=67.7) SLO	0.0628
F0(TR=67.7) SLO	2.4658
T*C(TR=67.7) SLO	0.335
Ag/g(TR=1067.8) SLV	0.1961
F0(TR=1067.8) SLV	2.5239
T*C(TR=1067.8) SLV	0.453
Coefficiente Amplificazione Topografica	St=1.000
Categoria terreno B	
stato limite SLV	
	S=1.20
	TB=0.19
	TC=0.58
	TD=2.38
stato limite SLO	
	S=1.20
	TB=0.15
	TC=0.46
	TD=1.85
Fattore di struttura (SLV)	
Classe duttilità	В
Tipo struttura	Legno
Struttura non regolare in altezza	Kr=0.800000
	Kw=1.000
Regolare in pianta	SI
Tipologia: Portali iperstatici con unioni a gambo cilindrico (spinotti e bulloni)	Ce=2.500
Fattore di struttura q=Kw*Kr*Ce	2.000

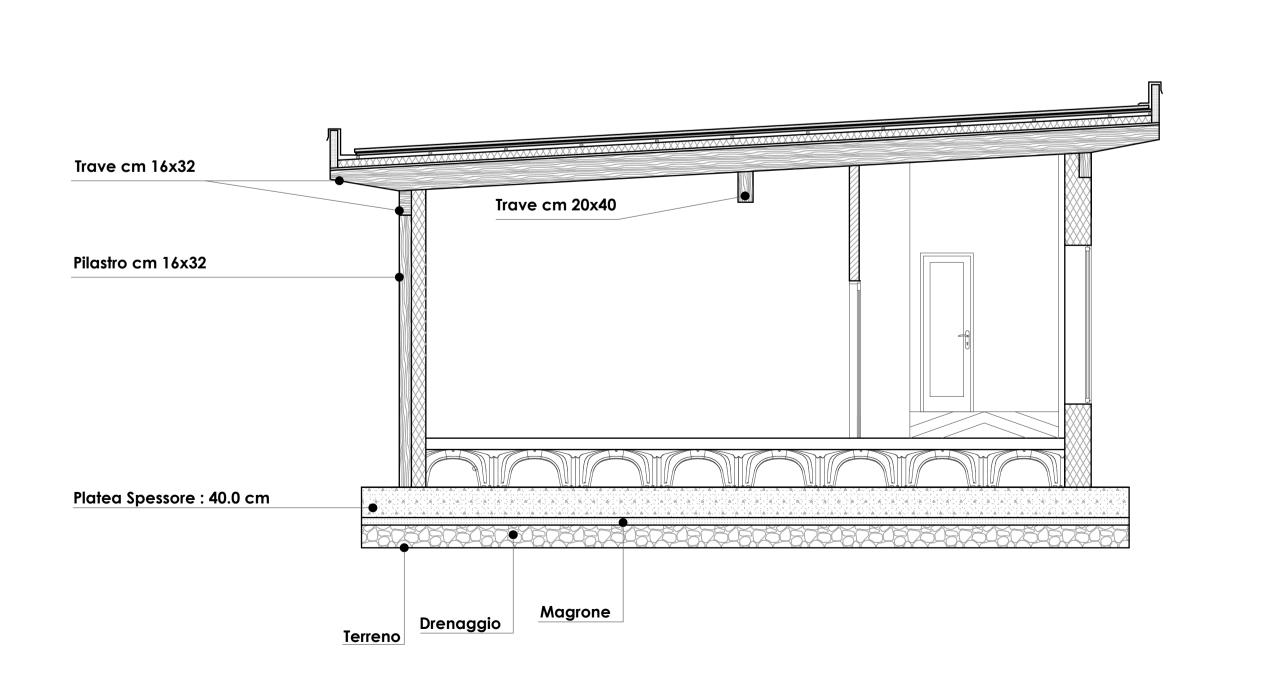
TSLV [s]	SLV[a/g]	TSLO [s]	SLO[a/g]
0.00000	0.23529	0.00000	0.07540
0.19444	0.22494	0.15301	0.18593
0.58333	0.22494	0.45904	0.18593
0.78343	0.16749	0.65794	0.12972
0.98354	0.13341	0.85684	0.09961

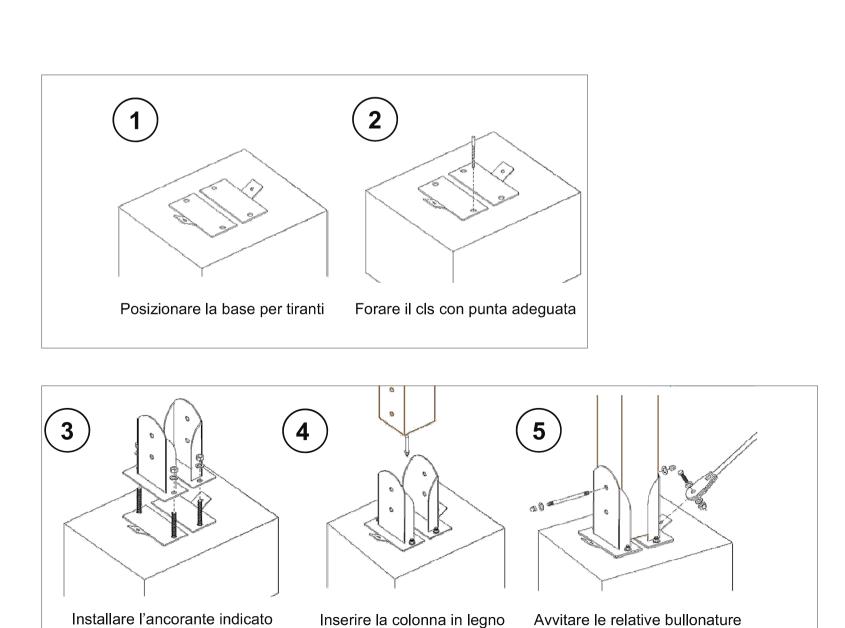

1.18365	0.11086	1.05574	0.08084
1.38375	0.09483	1.25464	0.06803
1.58386	0.08284	1.45354	0.05872
1.78397	0.07355	1.65244	0.05165
1.98408	0.06613	1.85135	0.04610
2.18418	0.06007	2.06621	0.03701
2.38429	0.05503	2.28108	0.03037
2.58625	0.04677	2.49594	0.02536
2.78822	0.04024	2.71081	0.02150
2.99018	0.03921	2.92567	0.01846
3.19214	0.03921	3.14054	0.01602
3.39411	0.03921	3.35540	0.01403
3.59607	0.03921	3.57027	0.01240
3.79804	0.03921	3.78513	0.01103
4.00000	0.03921	4.00000	0.00988



Verifica Degli Spostamenti Relativi

Scenario di calcolo : Set_NT_SLV_SLD_A2_STR/GEO


Interp.	Comb.	ηXv	ηXh	ηYv	ηYh	Nodo1	Nodo2	η	ηAmm	Cs
		m	m	m	m			m	m	
0-1	(28+29)-II-2	0.00	0.00	0.00	0.01	1052	1071	0.01	0.04	4.15
0-1	(28+29)-II-2	0.00	0.00	0.00	0.01	1053	1072	0.01	0.04	4.93
0-1	(28+29)-II-2	0.00	0.00	0.00	0.01	1054	1073	0.01	0.04	3.09
0-1	(28+29)-I-3	0.00	0.01	0.00	0.00	1055	1074	0.01	0.04	4.24
0-1	(28+29)-I-3	0.00	0.01	0.00	0.00	1056	1075	0.01	0.04	4.24
0-1	(28+29)-II-2	0.00	0.00	0.00	0.01	1057	1076	0.01	0.04	3.48
0-1	(28+29)-II-2	0.00	0.00	0.00	0.01	1058	1084	0.01	0.04	3.78
0-1	(28+29)-II-2	0.00	0.00	0.00	0.01	1059	1087	0.01	0.04	3.66
0-1	(28+29)-II-2	0.00	0.00	0.00	0.01	1060	1078	0.01	0.04	3.25
0-1	(28+29)-II-2	0.00	0.00	0.00	0.01	1061	1081	0.01	0.04	3.36
0-1	(28+29)-I-3	0.00	0.01	0.00	0.00	1068	1093	0.01	0.04	2.93
0-1	(28+29)-I-3	0.00	0.01	0.00	0.00	1069	1092	0.01	0.04	2.93
0-1	(28+29)-I-3	0.00	0.01	0.00	0.00	1153	1094	0.01	0.04	2.93
0-1	(28+29)-I-3	0.00	0.01	0.00	0.00	1156	0	0.01	0.04	3.57
0-1	(28+29)-I-3	0.00	0.01	0.00	0.00	1156	1175	0.01	0.04	4.23
0-1	(28+29)-I-3	0.00	0.01	0.00	0.00	1256	100	0.01	0.04	3.57
				Miniı	no					
0-1	(28+29)-I-3	0.00	0.01	0.00	0.00	1069	1092	0.01	0.04	2.93


Imp 0 (quota 0.00)

Sezione Tipo

Particolare Piastra di Ancoraggio

Comune di Santa Maria del Cedro

Provincia di Cosenza

<u>PROGETTO:</u> REALIZZAZIONE NUVO EDIFICIO PUBBLICO, DESTINATO A SCUOLA CON STRUTTURA IN LEGNO NEL COMUNE DI SANTA MARIA DEL CEDRO (CS). CLASSE D'USO DELLA COSTRUZIONE 3.

<u>PRATICA:</u> REALIZZAZIONE DEGLI INTERVENTI DIRETTI ALL'AMPLIAMENTO DELLA SCUOLA ELEMENTARE UBICATA IN VIA ORSOMARSO DEL COMUNE DI SANTA MARIA DEL CEDRO FRAZIONE MARCELLINA.

Il Committente

Comune di Santa Maria del Cedro

via Nazionale n.16 87020, Santa Maria del Cedro (CS) Tel. 0.985/5727 - C.F. 00433700788

Il Responsabile del Servizio

Dott. Ing. Giuseppe Durante

I Progettisti e DD.LL.

Dott. Geom. Giuseppe Riccetti

Geom. Carmine Covucci

Data: novembre 2016

Tavola:
Integrazione
D7

Elaborato:

Dimensionamento del giunto tecnico

Scala:

Visti e Pareri :

Aggiornamenti:

Calcolo della dimensione del giunto sismico in funzione dei parametri geologico-sismici e delle verifiche di calcolo effettuate.

In ingegneria sismica, il martellamento è un fenomeno distruttivo che si può verificare quando un evento sismico violento colpisce due edifici contigui. Se il giunto tecnico (cioè lo spazio libero) fra due corpi di fabbrica contigui non è sufficientemente ampio affinché questi elementi strutturali possano oscillare senza toccarsi, i due corpi di fabbrica urtano l'uno contro l'altro lesionandosi a vicenda.

Per evitare questo pericoloso fenomeno, le Norme Tecniche per le Costruzioni (disciplinate in Italia dal D.M. 14 gennaio 2008) prevedono[1] che la distanza tra due costruzioni contigue (d) non sia inferiore alla somma degli spostamenti massimi orizzontali calcolati per lo Stato Limite di salvaguardia della Vita (SLV) e, in ogni caso, non inferiore a (NTC 2008 cap 7.2.2)

$$d = \frac{\alpha h}{100}$$

dove:

- h è la quota dei punti affacciati misurata dal piano di fondazione;
- α è un coefficiente di rischio sismico uguale o inferiore a 1, e calcolato come

$$\frac{a_g S}{0, 5g}$$

Nella formula del coefficiente, $\mathbf{a_g}$ è l'accelerazione orizzontale massima al suolo indotta dal sisma, \mathbf{S} è un coefficiente di amplificazione sismica che tiene conto delle caratteristiche topografiche e stratigrafiche del terreno, mentre \mathbf{g} è l'accelerazione di gravità.

Per evitare fenomeni di martellamento in caso di sisma, è necessario dimensionare il giunto sismico.

Qui di seguito vengono riportati i parametri tipici del sito, e, in funzione dei calcoli effettuati per la struttura in questione, i tabulati relativi agli spostamenti massimi per gli impalcati in caso di sisma, valutati agli SLD e SLU.

Vita della struttura	
Tipo	Opere ordinarie (50-100) 50 - 100 anni
Vita nominale(anni)	75.0
Classe d'uso	Classe III
Coefficiente d'uso	1.500
Periodo di riferimento(anni)	112.500
Stato limite di esercizio - SLD	PVR=63.0%
Stato limite ultimo - SLV	PVR=10.0%
Periodo di ritorno SLD(anni)	TR=113.2
Periodo di ritorno SLV(anni)	TR=1067.8
Tenede at Mothe 62 ((will)	1100/10
Parametri del sito	
Comune	Santa Maria del Cedro - (CS)
Longitudine	15.8268
Latitudine	39.7679
Id reticolo del sito	37887-37665-37664-37886
Valori di riferimento del sito	
Ag/g(TR=113.2) SLD	0.0789
F0(TR=113.2) SLD	2.4851
T*C(TR=113.2) SLD	0.358
Ag/g(TR=1067.8) SLV	0.1961
F0(TR=1067.8) SLV	2.5239
T*C(TR=1067.8) SLV	0.453
Coefficiente Amplificazione Topografica	St=1.000
Categoria terreno B stato limite SLV	
Stato lilling SL v	S=1.20
	TB=0.19
	TC=0.58
	TD=2.38
stato limite SLD	
	S=1.20
	TB=0.16
	TC=0.48
	TD=1.92
Fattore di struttura (SLV)	
Classe duttilità	В
Tipo struttura	Legno
Struttura non regolare in altezza	Kr=0.800000
ou unuta non regulare ni anezza	Ki=0.800000 Kw=1.000
Decelors in microte	
Regolare in pianta Tinalogia a Portali inspectatioi con uniqui a gamba cilinduica (crimatti a bulloni)	SI Co=2.500
Tipologia: Portali iperstatici con unioni a gambo cilindrico (spinotti e bulloni)	Ce=2.500
Fattore di struttura q=Kw*Kr*Ce	2.000

Dai tabulati di calcolo emerge che il periodo fondamentale in direzione x è pari a T=0.52 s

CALCOLO ALIQUOTA SPOSTAMENTO DELLA NUOVA STRUTTURA

In funzione dei calcoli effettuati per la struttura in questione, si riportano i tabulati relativi agli spostamenti massimi per gli impalcati in caso di sisma, valutati agli SLD e SLU.

Come si denota, lo spostamento massimo è valutato pari a 20.00 mm. Tale valore va amplificato per il fattore q, come si vedrà in seguito.

Verifica Degli Spostamenti Relativi

Scenario di calcolo: Set_NT_SLV_SLD_A2_STR/GEO

Interp.	Comb.	ηXv	ηXh	ηYv	ηYh	Nodo1	Nodo2	η	ηAmm	Cs
		m	m	m	m			m	m	
0-1	(28+29)-II-2	0.00	0.00	0.00	0.01	1052	1071	0.01	0.04	3.71
0-1	(28+29)-II-2	0.00	0.00	0.00	0.01	1053	1072	0.01	0.04	4.42
0-1	(28+29)-II-2	0.00	0.00	0.00	0.01	1054	1073	0.01	0.04	2.77
0-1	(28+29)-I-3	0.00	0.01	0.00	0.00	1055	1074	0.01	0.04	3.70
0-1	(28+29)-I-3	0.00	0.01	0.00	0.00	1056	1075	0.01	0.04	3.70
0-1	(28+29)-II-2	0.00	0.00	0.00	0.01	1057	1076	0.01	0.04	3.12
0-1	(28+29)-II-2	0.00	0.00	0.00	0.01	1058	1084	0.01	0.04	3.39
0-1	(28+29)-II-2	0.00	0.00	0.00	0.01	1059	1087	0.01	0.04	3.28
0-1	(28+29)-II-2	0.00	0.00	0.00	0.01	1060	1078	0.01	0.04	2.91
0-1	(28+29)-II-2	0.00	0.00	0.00	0.01	1061	1081	0.01	0.04	3.01
0-1	(28+29)-I-3	0.00	0.02	0.00	0.00	1068	1093	0.02	0.04	2.55
0-1	(28+29)-I-3	0.00	0.02	0.00	0.00	1069	1092	0.02	0.04	2.55
0-1	(28+29)-I-3	0.00	0.02	0.00	0.00	1153	1094	0.02	0.04	2.55
0-1	(28+29)-I-3	0.00	0.01	0.00	0.00	1156	0	0.01	0.04	3.11
0-1	(28+29)-I-3	0.00	0.01	0.00	0.00	1156	1175	0.01	0.04	3.69
0-1	(28+29)-I-3	0.00	0.01	0.00	0.00	1256	100	0.01	0.04	3.11
				Mini	mo					
0-1	(28+29)-I-3	0.00	0.02	0.00	0.00	1069	1092	0.02	0.04	2.55

Risultati Analisi Dinamica - Spostamenti massimi - Nodi

Scenario di calcolo : Set_NT_SLV_SLD_A2_STR/GEO

la tripletta (Cb [-SubC-Cbm]) indica la Combinazione - SottoCombinazione sismica - Posizione Masse, nel caso non sismico mancano SubC-Cbm

Nodo	Trasl. X	Trasl. Y	Trasl. Z	Rotaz. X	Rotaz. Y	Rotaz. Z
0	-0.01(12-II-1)	0.01(13-I-1)	-0.00(2)	-0.04(13-I-1)	-0.03(12-II-1)	-0.06(12-II-1
100	-0.01(12-II-1)	0.01(13-I-1)	-0.00(2)	-0.05(13-I-1)	0.02(12-II-1)	0.04(13-II-1
200	-0.01(12-II-1)	0.01(13-I-1)	-0.00(12-I-1)	-0.04(13-I-1)	0.03(12-I-1)	0.03(13-II-1
1052	0.00(1)	0.00(1)	-0.00(3)	0.00(13-II-1)	0.00(12-I-1)	0.00(1
1053	0.00(1)	0.00(1)	-0.00(3)	0.00(13-II-1)	-0.00(3)	0.00(1
1054	0.00(1)	0.00(1)	-0.00(3)	0.00(13-II-1)	-0.00(12-II-1)	0.00(1
1055	0.00(1)	0.00(1)	-0.00(2)	-0.00(13-I-1)	0.00(12-I-1)	0.00(
1056	0.00(1)	0.00(1)	-0.00(2)	-0.00(13-I-1)	-0.00(12-II-1)	0.00(1
1057	0.00(1)	0.00(1)	-0.00(2)	-0.00(2)	0.00(12-I-1)	0.00(1
1058	0.00(1)	0.00(1)	-0.00(2)	-0.00(2)	-0.00(12-II-1)	0.00(1
1059	0.00(1)	0.00(1)	-0.00(2)	-0.00(2)	0.00(12-I-1)	0.00(
1060	0.00(1)	0.00(1)	-0.00(3)	0.00(13-II-1)	0.00(12-I-1)	0.00(
1061	0.00(1)	0.00(1)	-0.00(3)	0.00(13-II-1)	-0.00(12-II-1)	0.00(
1064	0.00(1)	0.00(1)	-0.00(1)	0.00(13-II-1)	-0.00(3)	0.00(
1065	0.00(1)	0.00(1)	-0.00(2)	-0.00(13-I-1)	-0.00(2)	0.00(
1066	0.00(1)	0.00(1)	-0.00(2)	-0.00(13-I-1)	0.00(12-I-1)	0.00(
1067	0.00(1)	0.00(1)	-0.00(3)	0.00(13-II-1)	0.00(2)	0.00(
1068	0.00(1)	0.00(1)	-0.00(3)	0.00(13-II-1)	-0.00(12-II-1)	0.00(
1069	0.00(1)	0.00(1)	-0.00(2)	0.00(13-II-1)	0.00(12-I-1)	0.00(
1071	0.01(12-I-1)	0.01(13-I-1)	-0.00(3)	-0.11(13-I-1)	0.06(2)	0.04(12-II-
1072	-0.01(12-II-1)	0.01(13-I-1)	-0.00(13-II-1)	-0.10(13-I-1)	-0.06(3)	-0.05(13-I-
1073	-0.01(12-II-1)	0.01(13-I-1)	-0.00(3)	-0.08(2)	0.03(12-I-1)	0.03(12-II-
1074	-0.01(12-II-1)	0.01(13-I-1)	-0.00(2)	0.10(13-II-1)	0.06(2)	0.03(13-I-
1075	-0.01(12-II-1)	0.01(13-I-1)	-0.00(2)	0.02(13-II-1)	-0.05(12-II-1)	0.06(13-II-
1076	-0.01(12-II-1)	0.01(13-I-1)	-0.00(2)	0.09(3)	0.04(12-I-1)	0.01(13-I-
1077	-0.01(12-II-1)	0.01(13-I-1)	-0.00(3)	-0.14(2)	-0.01(12-I-1)	0.04(13-I-
1078	-0.01(12-II-1)	0.01(13-I-1)	-0.00(3)	-0.15(2)	-0.04(12-II-1)	0.03(12-II-
1079	-0.01(12-II-1)	0.01(13-I-1)	-0.00(3)	-0.14(2)	0.01(12-II-1)	0.03(12-II-
1080	-0.01(12-II-1)	0.01(13-I-1)	-0.00(3)	-0.13(2)	-0.01(12-I-1)	-0.03(12-I-
1081	-0.01(12-II-1)	0.01(13-I-1)	-0.00(3)	-0.15(2)	0.04(12-I-1)	0.04(13-II-
1082	-0.01(12-II-1)	0.01(13-I-1)	-0.00(3)	-0.14(2)	0.01(12-II-1)	0.06(13-II-
1083	-0.01(12-II-1)	0.01(13-I-1)	-0.00(2)	0.14(3)	0.02(12-II-1)	0.06(13-II-
1084	-0.01(12-II-1)	0.01(13-I-1)	-0.00(2)	0.15(3)	0.04(12-I-1)	0.04(13-II-
1085	-0.01(12-II-1)	0.01(13-I-1)	-0.00(2)	0.14(3)	-0.02(12-I-1)	0.02(13-II-
1086	-0.01(12-II-1)	0.01(13-I-1)	-0.00(2)	0.15(3)	0.02(12-II-1)	0.01(13-I-
1087	-0.01(12-II-1)	0.01(13-I-1)	-0.00(2)	0.16(3)	-0.05(12-II-1)	0.02(13-I-
1088	-0.01(12-II-1)	0.01(13-I-1)	-0.00(3)	0.15(3)	-0.01(12-I-1)	0.03(13-I-
1092	-0.02(12-II-1)	0.01(13-I-1)	-0.00(2)	-0.07(13-I-1)	-0.01(12-II-1)	0.02(12-II-
1093	-0.02(12-II-1)	0.01(13-I-1)	-0.00(3)	-0.04(13-I-1)	0.26(2)	0.05(13-I-
1094	-0.02(12-II-1)	0.01(13-I-1)	-0.00(3)	0.03(13-II-1)	-0.25(3)	-0.07(13-I-
1095	-0.02(12-II-1)	0.01(13-I-1)	-0.01(3)	-0.01(13-II-1)	-0.17(2)	-0.08(13-I-
1096	-0.02(12-II-1)	0.01(13-I-1)	-0.01(3)	-0.02(13-II-1)	0.06(3)	0.05(13-II-
1097	-0.02(12-II-1)	0.01(13-I-1)	-0.00(2)	-0.01(13-I-1)	0.19(3)	0.02(13-II-
1098	-0.02(12-II-1)	0.01(13-I-1)	-0.00(2)	-0.01(13-I-1)	-0.20(2)	-0.02(12-I-
1099	-0.02(12-II-1)	0.01(13-I-1)	-0.01(2)	-0.02(13-II-1)	-0.06(2)	-0.04(13-II-
1100	-0.02(12-II-1)	0.01(13-I-1)	-0.01(2)	-0.01(13-II-1)	0.17(2)	0.06(13-I-
1104	-0.01(12-II-1)	0.01(13-I-1)	-0.00(13-I-1)	0.10(13-II-1)	0.03(13-II-1)	0.01(12-II-
1105	-0.01(12-II-1)	0.01(13-I-1)	-0.00(13-I-1)	0.02(13-II-1)	0.02(12-I-1)	0.04(13-II-
1106 1107	-0.01(12-II-1)	0.01(13-I-1)	0.00(3)	0.08(3)	0.02(12-I-1)	0.01(13-II-
1107	-0.01(12-II-1)	0.01(13-I-1)	0.00(3)	0.12(3) 0.13(3)	0.04(3) 0.02(12-I-1)	0.04(13-II-
1108	-0.01(12-II-1)	0.01(13-I-1)			-0.02(12-I-1)	0.03(13-II-
1110	-0.01(12-II-1) -0.01(12-II-1)	0.01(13-I-1) 0.01(13-I-1)	0.00(3)	0.13(3)	0.02(12-1-1)	-0.02(13-I- 0.01(12-II-
1110	-0.01(12-II-1) -0.01(12-II-1)	0.01(13-I-1) 0.01(13-I-1)	0.00(3)	0.13(3)	-0.03(12-II-1)	0.01(12-11- 0.01(12-II-
1111	-0.01(12-II-1) -0.01(12-II-1)	0.01(13-I-1) 0.01(13-I-1)	-0.00(13-I-1)	0.13(3)	-0.03(12-11-1)	-0.01(12-11-
1112	0.01(12-II-1)	0.01(13-I-1) 0.01(13-I-1)	-0.00(13-II-1)	-0.11(13-I-1)	0.03(13-I-1)	0.02(12-II-
1114	0.01(12-I-1) 0.01(12-I-1)	0.01(13-I-1) 0.01(13-I-1)	-0.00(13-II-1)	-0.11(13-1-1)	-0.04(3)	-0.02(12-11-
1115	0.01(12-I-1) 0.01(12-I-1)	0.01(13-I-1) 0.01(13-I-1)	0.00(13-11-1)	-0.12(2)	-0.04(3)	0.02(12-II-
1117	0.01(12-I-1) 0.01(12-I-1)	0.01(13-I-1) 0.01(13-I-1)	0.00(2)	-0.13(2)	0.02(12-11-1)	0.02(12-II- 0.02(12-II-
				-0.12(2)	0.02(3) 0.02(12-I-1)	0.02(12-II- 0.02(12-II-
1119	0.01(12-I-1)	0.01(13-I-1)	-0.00(13-II-1)	_[] []X[/] [() (Y// 1'/_1_1 1 \ \	() () // (/_!!

Nodo	Trasl. X	Trasl. Y	Trasl. Z	Rotaz. X	Rotaz. Y	Rotaz. Z
1121	0.01(12-I-1)	0.01(13-I-1)	0.00(2)	-0.12(2)	0.02(12-I-1)	0.03(13-II-1)
1122	0.01(12-I-1)	0.01(13-I-1)	-0.00(13-II-1)	-0.12(2)	0.03(3)	0.03(13-II-1)
1123	0.01(12-I-1)	0.01(13-I-1)	-0.00(13-II-1)	-0.09(13-I-1)	-0.04(13-I-1)	0.04(13-II-1)
1153	0.00(1)	0.00(1)	-0.00(3)	-0.00(13-I-1)	-0.00(12-II-1)	0.00(1)
1156	0.00(1)	0.00(1)	-0.00(2)	-0.00(13-I-1)	-0.00(12-II-1)	0.00(1)
1156	0.00(1)	0.00(1)	-0.00(2)	-0.00(13-I-1)	-0.00(12-II-1)	0.00(1)
1175	-0.01(12-II-1)	0.01(13-I-1)	-0.00(2)	0.03(13-II-1)	0.02(12-I-1)	0.04(13-II-1)
1256	0.00(1)	0.00(1)	-0.00(2)	-0.00(13-I-1)	-0.00(12-II-1)	0.00(1)
1275	-0.01(12-II-1)	0.01(13-I-1)	-0.00(13-I-1)	-0.04(13-I-1)	0.01(12-I-1)	0.04(13-II-1)
1275	-0.01(12-II-1)	0.01(13-I-1)	-0.00(2)	0.03(13-II-1)	0.02(12-I-1)	0.03(13-II-1)
1375	-0.01(12-II-1)	0.01(13-I-1)	-0.00(13-I-1)	-0.04(13-I-1)	0.02(12-I-1)	0.03(13-II-1)

Periodi di vibrazione e Masse modali

Scenario di calcolo : Set_NT_SLV_SLD_A2_STR/GEO

Posizione masse 1

Numero di Frequenze calcolate =35, filtrate=6

N	T(s)	Coeff. Partecipazione		Masse Mo	dali	Percentua	li
				kgm*g			
		Dir=0°	Dir=90°	Dir=0°	Dir=90°	Dir=0°	Dir=90°
1(1)	0.4795	53.907	-4.292	28498	181	91.55	0.58
2(2)	0.4619	-4.042	-55.133	160	29809	0.51	95.77
3(3)	0.3428	3.232	6.442	102	407	0.33	1.31
4(4)	0.2740	7.189	1.135	507	13	1.63	0.04
5(5)	0.2397	13.714	-1.736	1844	30	5.93	0.09
6(6)	0.1719	-0.474	-7.967	2	622	0.01	2.00
Somma	a delle Mas	⊥ se Modali [k	 gm*g]	31114	31061		
Masse strutturali libere [kgm*g]				31126	31126		
Percentuale				99.96	99.79	99.96	99.79

Lo spostamento massimo estrapolato da tali tabulati va moltiplicato per un fattore che varia secondo i seguenti casi

Dmax = Dx * q se il periodo proprio T è maggiore del periodo Tc dello spettro

Dmax = Dx*(1+(q-1)) se il periodo proprio T è minore del periodo Tc dello spettro

Nel caso in questione si ha

fattore di struttura utilizzato per il calcolo, q= 2.00

Tc= 0.58

T = 0.48

quindi T< Tc

di conseguenza Dmax = Dx*(1+(q-1))

= 20*(1+(2.00-1)= 40.00 mm pari a 4.00 cm

CALCOLO ALIQUOTA SPOSTAMENTO DELLA STRUTTURA ESISTENTE

Secondo la Normativa in vigore, lo spostamento massimo per un edificio esistente è valutabile come

 $d = \frac{\text{alfa} \cdot h}{100}$ dove h è l'altezza dell'edificio, e α è determinato secondo la formula

 $\alpha = \frac{ageS}{0.5*g}$ = 0.471 per il sito in questione il valore $\frac{ag}{g}$ =0.1961 agli Stati Limite Di Salvaguardia della Vita

con $\mathbf{a_g}$ = accelerazione di picco al suolo

S = 1.20

g = accelerazione di gravità

si considerano i due edifici adiacenti di cui si prende in considerazione l'altezza maggiore per l'edificio più alto si ha h=9.7 m = 970 cm

 $d = \frac{\alpha h}{100}$

 $\frac{0.3264*9500}{100} = 45.687 \text{ mm pari a } 4.6 \text{ cm} \quad \text{arrotondato per eccesso}$

Se si sommano i due spostamenti si ottiene 4.6 cm + 4.00 cm = 8.6 cm.

Il giunto sarà dimensionato con uno spessore di 12 cm.

Comune di Santa Maria del Cedro

Provincia di Cosenza

<u>PROGETTO:</u> REALIZZAZIONE NUVO EDIFICIO PUBBLICO, DESTINATO A SCUOLA CON STRUTTURA IN LEGNO NEL COMUNE DI SANTA MARIA DEL CEDRO (CS). CLASSE D'USO DELLA COSTRUZIONE 3.

<u>PRATICA:</u> REALIZZAZIONE DEGLI INTERVENTI DIRETTI ALL'AMPLIAMENTO DELLA SCUOLA ELEMENTARE UBICATA IN VIA ORSOMARSO DEL COMUNE DI SANTA MARIA DEL CEDRO FRAZIONE MARCELLINA.

II Committente

Comune di Santa Maria del Cedro

via Nazionale n.16 87020, Santa Maria del Cedro (CS) Tel. 0.985/5727 - C.F. 00433700788

Il Responsabile del Servizio

Dott. Ing. Giuseppe Durante

I Progettisti e DD.LL.

Dott. Geom. Giuseppe Riccetti

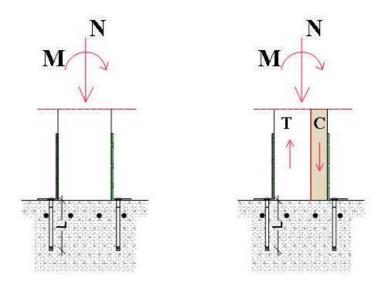
Geom. Carmine Covucci

Data: novembre 2016

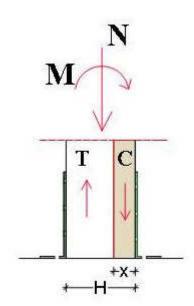
Iavoia	•
Integrazi	one
D8	

Elaborato:

Verifica della piastra di ancoraggio di base pilastro-cls


Scala:

Visti e Pareri :


Aggiornamenti:

Verifica della piastra di ancoraggio di base pilastro calcestruzzo

Se si considera una tipica sezione di base legno cls, le azioni in gioco possono essere schematizzate come di seguito

Si impone il valore di progetto della resistenza a compressione parallela alla fibra del legno f e si calcola la forza di trazione T che deve essere sopportata dal collegamento metallico, con b misura della profondità del pilastro

Assegnate le azioni interne di progetto N_d ed M_d , (per semplicità indicate con N e M) si ha un sistema di due equazioni di equilibrio (delle forze e dei momenti) nelle due incognite x (profondità della zona lignea compressa) e T.

Come al solito M è il momento di progetto calcolato rispetto al baricentro del rettangolo (rispetto ad H/2).

$$T \cdot \frac{H}{2} + f \cdot b \cdot x \cdot \left(\frac{H}{2} - \frac{x}{2}\right) = M$$
$$f \cdot b \cdot x - T = N$$

Ricavando T dalla seconda equazione e sostituendo nella prima si ottiene un'equazione di secondo grado in x di cui si considera solo la soluzione con x < H:

$$x^{2} - 2H \cdot x + \frac{NH + 2M}{fb} = 0 \rightarrow x = H - \sqrt{H^{2} - (NH + 2M)/(fb)}$$
$$T = f \cdot b \cdot x - N$$

NOTA: Se si fa l'ipotesi di affidare ai connettori anche la trasmissione della compressione le forze che sollecitano le connessioni valgono:

$$C = \frac{N}{2} + \frac{M}{H} \quad T = \frac{N}{2} - \frac{M}{H}$$

seguendo tale verifica, nella sezione più sollecitata si ottiene la forza di trazione

47								
Н	b	N (N)	M (N m)	f (N/mmq)	х	С	Т	
320	160	136000	390	10	46.6641	149325.2	13325.2	136000

47								
Н	b	N (N)	M (N m)	f (N/mmq)	х	С	Т	
320	160	112000	1030	10	39.4425	126216.1	14216.06	112000

ora, lo sforzo di trazione pari a 14 216 N, viene assorbito dalle viti di ancoraggio. Sulla piastra orizzontale del giunto sono poste 4 viti con tasselli di diametro 16 mmm e lunghezza 150 mm (piastra di base tipo soltec sth 102160P) che reagiscono a trazione. Si ottiene una sollecitazione di 3,554 KN a vite, pari a 355 Kg.

Tali sollecitazioni sono inferiori alle sollecitazioni caratteristiche relative alle viti e ai tasselli ancorati al calcestruzzo.

Le viti resistenti al taglio sono 4, per una sollecitazione pari a 14 216 / 4

= 3,554 KN a vite, pari a 355 Kg.

Tali valore sono in linea con le caratteristiche delle viti.

Comune di Santa Maria del Cedro

Provincia di Cosenza

PROGETTO: REALIZZAZIONE NUVO EDIFICIO PUBBLICO, DESTINATO A SCUOLA CON STRUTTURA IN LEGNO NEL COMUNE DI SANTA MARIA DEL CEDRO (CS). CLASSE D'USO DELLA COSTRUZIONE 3.

<u>PRATICA:</u> REALIZZAZIONE DEGLI INTERVENTI DIRETTI ALL'AMPLIAMENTO DELLA SCUOLA ELEMENTARE UBICATA IN VIA ORSOMARSO DEL COMUNE DI SANTA MARIA DEL CEDRO FRAZIONE MARCELLINA.

II Committente

Comune di Santa Maria del Cedro

via Nazionale n.16 87020, Santa Maria del Cedro (CS) Tel. 0.985/5727 - C.F. 00433700788

Il Responsabile del Servizio

Dott. Ing. Giuseppe Durante

I Progettisti e DD.LL.

Dott. Geom. Giuseppe Riccetti

Geom. Carmine Covucci

Data: novembre 2016

Tavola:

D9

Elaborato:

Piano di manutenzione delle strutture

Visti o Parori:

Aggiornamenti:

Scala: Visti e Pareri : Aggiornamenti :

PIANO DI MANUTENZIONE DELLE STRUTTURE

Comune:	Santa Maria del cedro
Titolo del progetto:	REALIZZAZIONE NUVO EDIFICIO PUBBLICO, DESTINATO A SCUOLA CON STRUTTURA IN LEGNO NEL COMUNE DI SANTA MARIA DEL CEDRO (CS). CLASSE D'USO DELLA COSTRUZIONE 3
Committente:	
Opera:	
Data: 27/11/2016	Progettista:

1 PIANO DI MANUTENZIONE DELLE STRUTTURE

Il piano di manutenzione è il documento complementare al progetto esecutivo che prevede, pianifica e programma, tenendo conto degli elaborati progettuali esecutivi effettivamente realizzati, l'attività di manutenzione dell'intervento al fine di mantenerne nel tempo la funzionalità, le caratteristiche di qualità, l'efficienza ed il valore economico.

Il piano di manutenzione assume contenuto differenziato in relazione all'importanza e alla specificità dell'intervento, ed è costituito dai sequenti documenti:

- il manuale d'uso;
- il manuale di manutenzione;
- il programma di manutenzione;

di seguito vengono riportati nel seguente paragrafo, in modo sommario, i contenuti dei suddetti documenti che accompagnano il progetto strutturale dell'opera:

- **1.1 Il manuale d'uso** contiene l'insieme delle informazioni atte a permettere all'utente di conoscere le modalità di fruizione dela struttura, nonché tutti gli elementi necessari per limitare quanto più possibile i danni derivanti da un'utilizzazione impropria, per consentire di eseguire tutte le operazioni atte alla sua conservazione che non richiedono conoscenze specialistiche e per riconoscere tempestivamente fenomeni di deterioramento anomalo al fine di sollecitare interventi specialistici.
- Il manuale d'uso contiene le seguenti informazioni:
- a) la collocazione nell'intervento delle parti menzionate;
- b) la rappresentazione grafica;
- c) la descrizione;
- d) le modalità di uso corretto.
- **1.2 Il manuale di manutenzione** si riferisce alla manutenzione delle parti più importanti della struttura. Esso fornisce, in relazione alle diverse unità tecnologiche, alle caratteristiche dei materiali o dei componenti interessati, le indicazioni necessarie per la corretta manutenzione nonché per il ricorso ai centri di assistenza o di servizio.

Il manuale di manutenzione contiene le seguenti informazioni:

- a) la collocazione nell'intervento delle parti menzionate;
- b) la rappresentazione grafica;
- c) la descrizione delle risorse necessarie per l'intervento manutentivo;
- d) il livello minimo delle prestazioni;
- e) le anomalie riscontrabili;
- f) le manutenzioni eseguibili direttamente dall'utente;
- g) le manutenzioni da eseguire a cura di personale specializzato.
- **1.3 Il programma di manutenzione** prevede un sistema di controlli e di interventi da eseguire, a cadenze temporalmente o altrimenti prefissate, al fine di una corretta gestione della struttura e delle sue parti nel corso degli anni.

Esso si articola secondo tre sottoprogrammi:

- *il sottoprogramma delle prestazioni*, che prende in considerazione, per classe di requisito, le prestazioni fornite dalla struttura e dalle sue parti nel corso del suo ciclo di vita;
- il sottoprogramma dei controlli, che definisce il programma delle verifiche e dei controlli al fine di rilevare il livello prestazionale (qualitativo e quantitativo) nei successivi momenti della vita della struttura, individuando la dinamica della caduta delle prestazioni aventi come estremi il valore di collaudo e quello minimo di norma;
- il sottoprogramma degli interventi di manutenzione, che riporta in ordine temporale i differenti interventi di manutenzione, al fine di fornire le informazioni per una corretta conservazione della struttura.

1.4 Normative di riferimento

Il presente "piano di manutenzione riguardante le strutture" previsto dalle nuove Norme Tecniche per le Costruzioni (D.M. 14 gennaio 2008 e dalle relative Circolare Esplicativa 2 febbraio 2009, 617) è redatto seguendo le indicazioni contenute sull'articolo 40 del D.P.R. 554/99.

MANUALE D'USO					
Comune:	Santa Maria del cedro				
Titolo del progetto:					
Committente:					
Opera:					
Data:	Progettista:				

27/11/2016		

2 MANUALE D'USO

Nel presente manuale d'uso è specificato come utilizzare le strutture che compongono l'opera in progetto. Non è consentito apportare modifiche o comunque compromettere l'integrità delle strutture per nessuna ragione. Occorre controllare periodicamente il grado di usura delle parti a vista al fine di riscontrare eventuali anomalie. In caso di accertata anomalia occorre consultare al più presto un tecnico abilitato.

Per i dettagli tecnici e per collocazione dei diversi elementi strutturali fare riferimento agli allegati grafici.

Detta opera verrà suddivisa per semplicità, in tre grandi parti strutturali:

- Strutture di fondazioni;
- Strutture orizzontali e/o inclinate;
- Strutture verticali.

2.1 Strutture di fondazioni.

Dette strutture hanno la funzione di trasferire il carico al terreno e possono essere costituite, in funzione della tipologia strutturale, in funzione dei carichi trasmessi ed in funzione del tipo di terreno, da:

- -Fondazioni dirette;
- -Fondazioni indirette;

Di seguito verranno riportati le procedure nonché le prescrizioni d'uso dell'opere in fondazioni.

Modalità di uso corretto:

L'utente dovrà soltanto accertarsi della comparsa di eventuali anomalie che possano anticipare l'insorgenza di fenomeni di dissesto e/o cedimenti strutturali. In caso di accertata anomalia occorre consultare al più presto un tecnico abilitato.

Anomalie riscontrabili:

Cedimenti

Dissesti dovuti a cedimenti di natura e causa diverse, talvolta con manifestazioni dell'abbassamento del piano di imposta della fondazione.

Distacchi murari

Disgregazione e distacco di parti notevoli del materiale che può manifestarsi anche mediante espulsione di elementi prefabbricati dalla loro sede.

Fessurazioni

Degradazione che si manifesta con la formazione di soluzioni di continuità del materiale e che può implicare lo spostamento reciproco delle parti.

Lesioni

Si manifestano con l'interruzione del tessuto murario. Le caratteristiche e l'andamento ne caratterizzano l'importanza e il tipo.

Non perpendicolarità del fabbricato

Non perpendicolarità dell'edificio a causa di dissesti o eventi di natura diversa.

Umidità

Presenza di umidità meteorica, da condensa, da infiltrazione, da risalita.

2.2 Strutture orizzontali e/o inclinate

Le strutture orizzontali o inclinate sono elementi strutturali con funzione di sostenere e trasferire, i carichi agenti, sia verticali che orizzontali, trasmettendoli alle strutture verticali. Di seguito verranno riportati le procedure nonché le prescrizioni d'uso di dette strutture.

Modalità di uso corretto:

Non compromettere l'integrità delle strutture. Controllo periodico del grado di usura delle parti in vista. Riscontro di eventuali anomalie.

Controllare sempre che i carichi variabili non superino i valori di progetto; in particolare porre attenzione nella disposizione di particolari arredamenti che possano determinare carichi concentrati non previsti in progetto. Per un uso corretto occorre che i solai non siano caricati con carichi <u>variabili</u> superiori a quelli di progetto riportati nella seguenti tabella, ed indicati con "QVar.":

Tabella solai tipo

Sol.	N° Descrizione	Spessore	QP	QF	QVar.	ψ0	ψ1	ψ2	Luce netta	Def	%QX	%QY
		m	kN/m^2	kN/m^2	kN/m^							
	1 copertura in legno	0.35	0	2	1	0.00	0.00	0.00	No	No	100	0

Anomalie riscontrabili:

Alveolizzazione

Degradazione che si manifesta con la formazione di cavità di forme e dimensioni variabili. Gli alveoli sono spesso interconnessi e hanno distribuzione non uniforme. Nel caso particolare in cui il fenomeno si sviluppa essenzialmente in profondità con andamento a diverticoli si può usare il termine alveolizzazione a cariatura.

Bolle d'aria

Alterazione della superficie del calcestruzzo caratterizzata dalla presenza di fori di grandezza e distribuzione irregolare, generati dalla formazione di bolle d'aria al momento del getto.

Cavillature superficiali

Sottile trama di fessure sulla superficie del calcestruzzo.

Crosta

Deposito superficiale di spessore variabile, duro e fragile, generalmente di colore nero.

Decolorazione

Alterazione cromatica della superficie.

Deposito superficiale

Accumulo di pulviscolo atmosferico o di altri materiali estranei, di spessore variabile, poco coerente e poco aderente alla superficie del rivestimento.

Disgregazione

Decoesione caratterizzata da distacco di granuli o cristalli sotto minime sollecitazioni meccaniche.

Distacco

Disgregazione e distacco di parti notevoli del materiale che può manifestarsi anche mediante espulsione di elementi prefabbricati dalla loro sede

Efflorescenze

Formazione di sostanze, generalmente di colore biancastro e di aspetto cristallino o

polverulento o filamentoso, sulla superficie del manufatto. Nel caso di efflorescenze saline, la cristallizzazione può talvolta avvenire all'interno del materiale provocando spesso il distacco delle parti più superficiali: il fenomeno prende allora il nome di criptoefflorescenza o subefflorescenza.

Erosione superficiale

Asportazione di materiale dalla superficie dovuta a processi di natura diversa. Quando sono note le cause di degrado, possono essere utilizzati anche termini come erosione per abrasione o erosione per corrasione (cause meccaniche), erosione per corrosione (cause chimiche e biologiche), erosione per usura (cause antropiche).

Esfoliazione

Degradazione che si manifesta con distacco, spesso seguito da caduta, di uno o più strati superficiali subparalleli fra loro, generalmente causata dagli effetti del gelo.

Esposizione dei ferri di armatura

Distacchi di parte di calcestruzzo (copriferro) e relativa esposizione dei ferri di armatura a fenomeni di corrosione per l'azione degli agenti atmosferici.

Fessurazioni

Presenza di rotture singole, ramificate, ortogonale o parallele all'armatura che possono interessare l'intero spessore del manufatto.

Macchie e graffiti

Imbrattamento della superficie con sostanze macchianti in grado di aderire e penetrare nel materiale.

Mancanza

Caduta e perdita di parti del materiale del manufatto.

Patina biologica

Strato sottile, morbido e omogeneo, aderente alla superficie e di evidente natura biologica, di colore variabile, per lo più verde. La patina biologica è costituita prevalentemente da microrganismi cui possono aderire polvere, terriccio.

Penetrazione di umidità

Comparsa di macchie di umidità dovute all'assorbimento di acqua.

Polverizzazione

Decoesione che si manifesta con la caduta spontanea dei materiali sotto forma di polvere o granuli.

Presenza di vegetazione

Presenza di vegetazione caratterizzata dalla formazione di licheni, muschi e piante lungo le superficie.

Rigonfiamento

Variazione della sagoma che interessa l'intero spessore del materiale e che si manifesta soprattutto in elementi lastriformi. Ben riconoscibile essendo dato dal tipico andamento "a bolla" combinato all'azione della gravità.

Scheggiature

Distacco di piccole parti di materiale lungo i bordi e gli spigoli degli elementi in calcestruzzo

2.2.1 Coperture piane e/o inclinate

Insieme degli elementi tecnici orizzontali o suborizzontali del sistema edilizio aventi funzione di separare gli spazi interni del sistema edilizio stesso dallo spazio esterno sovrastante. Le

coperture piane (o coperture continue) sono caratterizzate dalla presenza di uno strato di tenuta all'acqua, indipendentemente dalla pendenza della superficie di copertura, che non presenta soluzioni di continuità ed è composto da materiali impermeabili che posti all'esterno dell'elemento portante svolgono la funzione di barriera alla penetrazione di acque meteoriche. L'organizzazione e la scelta dei vari strati funzionali nei diversi schemi di funzionamento della copertura consente di definire la qualità della copertura e soprattutto i requisiti prestazionali. Gli elementi e i strati funzionali si possono raggruppare in: elemento di collegamento; elemento di supporto; elemento di tenuta; elemento portante; elemento isolante; strato di barriera al vapore; strato di continuità; strato della diffusione del vapore; strato di imprimitura; strato di ripartizione dei carichi; strato di pendenza; strato di pendenza; strato di ventilazione; strato di renante; strato filtrante, ecc.

Modalità di uso corretto:

Controllo periodico delle parti in vista finalizzato alla ricerca di anomalie che possano anticipare l'insorgenza di fenomeni di dissesto e/o cedimenti strutturali (fessurazioni, lesioni, ecc.). Controllare sempre che i carichi variabili non superino i valori di progetto.

Tenere pulite le gronde e le discese per evitare infiltrazioni di acqua che possa danneggiare la struttura portante

Anomalie riscontrabili:

Disgregazione

Decoesione caratterizzata da distacco di granuli o cristalli sotto minime sollecitazioni meccaniche.

Distacco

Disgregazione e distacco di parti notevoli del materiale che può manifestarsi anche mediante espulsione di elementi prefabbricati dalla loro sede

Esposizione dei ferri di armatura

Distacchi di parte di calcestruzzo (copriferro) e relativa esposizione dei ferri di armatura a fenomeni di corrosione per l'azione degli agenti atmosferici.

Fessurazioni

Presenza di rotture singole, ramificate, ortogonale o parallele all'armatura che possono interessare l'intero spessore del manufatto.

Lesioni

Si manifestano con l'interruzione del tessuto murario. Le caratteristiche e l'andamento ne caratterizzano l'importanza e il tipo.

Mancanza

Caduta e perdita di parti del materiale del manufatto.

Penetrazione di umidità

Comparsa di macchie di umidità dovute all'assorbimento di acqua.

2.3 Strutture verticali

Le strutture verticali, hanno la funzione di collegare le strutture orizzontali, con quelle in fondazioni.

Dette strutture, in funzione delle dimensioni dell'opera, dei carichi e dei sovraccarichi portati nonché dell'azione sismica a cui sono sottoposte, possono essere suddivise in tre grandi categorie:

- strutture a telaio;
- strutture ad arco;
- strutture a pareti portanti

Di seguito verranno riportati le procedure nonché le prescrizioni d'uso dell'opere verticali.

Modalità di uso corretto:

Non compromettere l'integrità delle strutture. Controllo periodico del grado di usura delle parti in vista. Riscontro di eventuali anomalie.

-			•	-			-
л	$n \cap n$	1 D 114	S PICI	contra	n	.,	
~	IIVII	Ialis	<i>= 11</i> 5	.viili a	u	••	

Come per le strutture orizzontali

MANUALE DI MANUTENZIONE					
Comune:	Santa Maria del cedro				
Titolo del progetto	•				
Committente:					
Opera:					
Data:	Progettista:				

27/11/2016		

3 MANUALE DI MANUTENZIONE

In detto manuale (di manutenzione delle strutture) verranno prescritte, e programmate, la manutenzione della struttura suddividendola in tre parti:

- manutenzione delle strutture in fondazioni;
- manutenzione delle strutture in orizzontali e/o inclinate;
- manutenzione delle strutture verticali.

Per quando concerne gli interventi di manutenzione ovvero al verificarsi delle anomalie, cosi come riportate nel manuale d'uso bisogna effettuare degli interventi tali da garantire il livello minimo delle prestazioni globali della struttura.

LIVELLO MINIMO DELLE PRESTAZIONI

Le strutture devono garantire la durabilità nel tempo in funzione della classe di esposizione prevista in fase di progetto, in modo da garantire la giusta resistenza alle diverse sollecitazioni di esercizio previste in fase di progettazione. Esse devono garantire stabilità, resistenza e durabilità nel tempo. Per i livelli minimi prestazionali si rimanda alle norme vigenti in materia al momento della progettazione.

MANUTENZIONI ESEGUIBILI DIRETTAMENTE DALL'UTENTE

Nessuna manutenzione può essere eseguita direttamente dall'utente, se non i controlli a vista dello stato di conservazione del manufatto.

MANUTENZIONI ESEGUIBILI A CURA DI PERSONALE SPECIALIZZATO

In seguito alla comparsa di segni di cedimenti strutturali (lesioni, fessurazioni, rotture), occorrerà consultare tecnici qualificati, per effettuare accurati accertamenti per la diagnosi e la verifica delle strutture. Una volta individuate la causa/effetto del dissesto, occorrerà procedere al consolidamento delle parti necessarie, a secondo del tipo di dissesto riscontrato. Inoltre una volta individuato il tipo di intervento, occorre affidarsi ad idonea impresa edile.

3.1 MANUTENZIONE DELLE STRUTTURE IN FONDAZIONI

I controlli periodici da effettuare su dette strutture, sono in funzione, del tipo di struttura, dei carichi e sovraccarichi portati, della classe d'uso della stessa, nonché dell'importanza dell'opera. In particolare, in via generale si vuole dare un indicazione sulla periodicità dei controlli da effettuare, ovvero eseguire la manutenzione delle fondazioni in corrispondenza di eventuali anomalie (come riportate nel manuale d'uso) o disfunzioni della struttura in fondazione e/o elevazione.

LIVELLO MINIMO DELLA PRESTAZIONE:

<u>Resistenza meccanica:</u> Le strutture in sottosuolo dovranno essere in grado di contrastare le eventuali manifestazioni di deformazioni e cedimenti rilevanti dovuti all'azione di determinate sollecitazioni (carichi, forze sismiche, ecc.)

Classe di Requisiti: Di stabilità Classe di Esigenza: Sicurezza

Prestazioni: Le strutture in sottosuolo, sotto l'effetto di carichi statici, dinamici e accidentali devono assicurare stabilità e resistenza.

Per i **livelli minimi** si rimanda alle prescrizioni di legge e di normative vigenti in materia.

ANOMALIE RISCONTRABILI:

Si rimanda al Manuale d'uso

CONTROLLI ESEGUIBILI DALL'UTENTE:

Controllo struttura Cadenza: ogni 12 mesi Tipologia: Controllo a vista

Controllare l'integrità delle pareti e dei pilastri verificando l'assenza di eventuali lesioni e/o fessurazioni. Controllare eventuali smottamenti del terreno circostante alla struttura che possano essere indicatori di cedimenti strutturali. Effettuare verifiche e controlli approfonditi particolarmente in corrispondenza di manifestazioni a calamità naturali (sisma, nubifragi, ecc.).

• Requisiti da verificare: 1) Resistenza meccanica.

• Anomalie riscontrabili: 1) Cedimenti; 2) Distacchi murari; 3) Fessurazioni; 4) Lesioni; 5) Non perpendicolarità del fabbricato; 6) Umidità.

MANUTENZIONI ESEGUIBILI DA PERSONALE SPECIALIZZATO:

Interventi sulle strutture Cadenza: quando occorre

In seguito alla comparsa di segni di cedimenti strutturali (lesioni, fessurazioni, rotture), effettuare accurati accertamenti per la diagnosi e la verifica delle strutture, da parte di tecnici qualificati, che possano individuare la causa/effetto del dissesto ed evidenziare eventuali modificazioni strutturali tali da compromettere la stabilità delle strutture, in particolare verificare la perpendicolarità del fabbricato. Procedere quindi al consolidamento delle stesse a secondo del tipo di dissesti riscontrati.

• Ditte specializzate: Specializzati vari.

3.2 MANUTENZIONE DELLE STRUTTURE ORIZZONTALI E/O INCLINATE

I controlli di manutenzione da effettuare su strutture orizzontali e inclinate , sono in funzione, del tipo struttura, dei carichi e sovraccarichi portati della classe d'uso della stessa, nonché dell'importanza dell'opera. In particolare, si vuole dare un indicazione sulla periodicità dei controlli da effettuare.

LIVELLO MINIMO DELLA PRESTAZIONE:

<u>Resistenza meccanica:</u> Le strutture orizzontali dovranno essere in grado di contrastare le eventuali manifestazioni di deformazioni e cedimenti rilevanti dovuti all'azione di determinate sollecitazioni (carichi, forze sismiche, ecc.).

Classe di Requisiti: Di stabilità Classe di Esigenza: Sicurezza

Prestazioni: Le strutture di elevazione, sotto l'effetto di carichi statici, dinamici e accidentali devono assicurare stabilità e resistenza

Per i **livelli minimi** si rimanda alle prescrizioni di legge e di normative vigenti in materia.

ANOMALIE RISCONTRABILI:

Si rimanda al Manuale d'uso.

CONTROLLI ESEGUIBILI DALL'UTENTE

Controllo struttura Cadenza: ogni 12 mesi Tipologia: Controllo a vista

Controllare l'integrità delle strutture individuando la presenza di eventuali anomalie come fessurazioni, disgregazioni, distacchi, riduzione del copriferro e relativa esposizione a processi di corrosione dei ferri d'armatura. Verifica dello stato del calcestruzzo e controllo del degrado e/o eventuali processi di carbonatazione.

- Requisiti da verificare: 1) Resistenza meccanica.
- Anomalie riscontrabili: 1) Alveolizzazione; 2) Bolle d'aria; 3) Cavillature superficiali; 4) Crosta; 5) Decolorazione; 6) Deposito superficiale; 7) Disgregazione; 8) Distacco; 9) Efflorescenze; 10) Erosione superficiale; 11) Esfoliazione; 12) Esposizione dei ferri di armatura; 13) Fessurazioni; 14) Macchie e graffiti; 15) Mancanza; 16) Patina biologica; 17) Penetrazione di umidità; 18) Polverizzazione; 19) Presenza di vegetazione; 20) Rigonfiamento;

MANUTENZIONI ESEGUIBILI DA PERSONALE SPECIALIZZATO

Interventi sulle strutture Cadenza: quando occorre

Gli interventi riparativi dovranno effettuarsi a secondo del tipo di anomalia riscontrata e previa diagnosi delle cause del difetto accertato.

• Ditte specializzate: Specializzati vari.

3.2.1 MANUTENZIONE DELLE COPERTURE PIANE E/O INCLINATE

Per la manutenzione delle coperture piane e/o inclinate si tiene conto di ulteriori livelli minimi prestazionali, di seguito elencati

LIVELLO MINIMO DELLA PRESTAZIONE

Impermeabilità ai liquidi: La copertura deve impedire all'acqua meteorica la penetrazione o il contatto con parti o elementi di essa non predisposti.

Classe di Requisiti: Termici ed igrotermici

Classe di Esigenza: Benessere

Prestazioni: Le coperture devono essere realizzate in modo tale da impedire qualsiasi infiltrazione d'acqua piovana al loro interno, onde evitare che l'acqua piovana possa raggiungere i materiali sensibili all'umidità che compongono le coperture stesse. Nel caso di coperture discontinue devono essere rispettate le pendenze minime delle falde, anche in funzione delle località, necessarie ad assicurare la impermeabilità in base ai prodotti utilizzati e alla qualità della posa in opera degli stessi.

Livello minimo della prestazione: In particolare, per quanto riguarda i materiali costituenti l'elemento di tenuta, è richiesto che: le membrane per l'impermeabilizzazione devono resistere alla pressione idrica di 60 kPa per 24 ore, senza manifestazioni di gocciolamenti o passaggi d'acqua; i prodotti per coperture discontinue del tipo tegole, lastre di cemento o fibrocemento, tegole bituminose e lastre di ardesia non devono presentare nessun gocciolamento se mantenuti per 24 ore sotto l'azione di una colonna d'acqua d'altezza compresa fra 10 e 250 mm, in relazione al tipo di prodotto impiegato. Gli altri strati complementari di tenuta devono presentare specifici valori d'impermeabilità.

Resistenza al vento: La copertura deve resistere alle azioni e depressioni del vento tale da non compromettere la stabilità e la funzionalità degli strati che la costituiscono.

Classe di Requisiti: Di stabilità Classe di Esigenza: Sicurezza

Prestazioni: Tutte le parti costituenti una copertura, continua o discontinua, devono essere idonee a resistere all'azione del vento in modo da assicurare durata e funzionalità nel tempo senza pregiudicare la sicurezza dell'utenza. L'azione del vento da considerare è quella prevista dal D.M. 12.2.1982, dalla C.M. 24.5.1982 n.22631 e dalla norma CNR B.U. 117 (che dividono convenzionalmente il territorio italiano in quattro zone). I parametri variano anche in funzione dell'altezza dell'edificio e della forma della copertura. In ogni caso le caratteristiche delle coperture, relativamente alla funzione strutturale, devono corrispondere a quelle prescritte dalle leggi e normative vigenti.

Livello minimo della prestazione: I livelli minimi variano in funzione degli elementi impiegati per i quali si rinvia alla normativa vigente.

Resistenza all'acqua: I materiali costituenti la copertura, a contatto con l'acqua, dovranno mantenere inalterate le proprie caratteristiche chimico-fisiche.

Classe di Requisiti: Protezione dagli agenti chimici ed organici Classe di Esigenza: Sicurezza

Prestazioni: I materiali costituenti i rivestimenti delle coperture nel caso vengano in contatto con acqua di origine e composizione diversa (acqua meteorica, acqua di condensa, ecc.) devono conservare inalterate le proprie caratteristiche chimico-fisiche, geometriche e funzionali.

Livello minimo della prestazione: Tutti gli elementi di tenuta delle coperture continue o

discontinue in seguito all'azione dell'acqua meteorica, devono osservare le specifiche di imbibizione rispetto al tipo di prodotto secondo le norme vigenti.

<u>Isolamento termico:</u> La copertura deve conservare la superficie interna a temperature vicine a quelle dell'aria ambiente tale da evitare che vi siano pareti fredde e comunque fenomeni di condensazione superficiale. In particolare devono essere evitati i ponti termici.

Classe di Requisiti: Termici ed igrotermici Classe di Esigenza: Benessere

Prestazioni: Le prestazioni relative all'isolamento termico delle coperture sono valutabili in base alla trasmittanza termica unitaria U ed ai coefficienti lineari di trasmissione kl per ponti termici o punti singolari che essa possiede.

Livello minimo della prestazione: Pur non stabilendo specifici limiti prestazionali per le singole chiusure ai fini del contenimento delle dispersioni, tuttavia i valori di U e kl devono essere tali da concorrere a contenere il coefficiente volumico di dispersione Cd dell'intero edificio e quello dei singoli locali nei limiti previsti dalle leggi e normative vigenti.

(Attitudine al) controllo della condensazione interstiziale: La copertura dovrà essere realizzata in modo da evitare la formazione di condensazione al suo interno.

Classe di Requisiti: Termici ed igrotermici Classe di Esigenza: Benessere

Prestazioni: La copertura dovrà essere realizzata in modo da evitare la formazione di condensazione al suo interno. In particolare in ogni punto della copertura sia interno che superficiale, il valore della pressione parziale del vapor d'acqua Pv deve essere inferiore alla corrispondente valore della pressione di saturazione Ps.

Livello minimo della prestazione: I livelli minimi variano in funzione di prove di laboratorio eseguite secondo le norme vigenti: - UNI 10350. Componenti edilizi e strutture edilizie - Prestazioni igrotermiche - Stima della temperatura superficiale interna per evitare umidità critica superficiale e valutazione del rischio di condensazione interstiziale;

- UNI 10351. Materiali da costruzione. Conduttività termica e permeabilità al vapore;
- UNI EN 12086. Isolanti termici per edilizia Determinazione delle proprietà di trasmissione del vapore acqueo.

Resistenza meccanica: La copertura deve garantire una resistenza meccanica rispetto alle condizioni di carico (carichi concentrati e distribuiti) di progetto in modo da garantire la stabilità e la stabilità degli strati costituenti. Inoltre vanno considerate le caratteristiche dello strato di supporto che dovranno essere adeguate alle sollecitazioni e alla resistenza degli elementi di tenuta.

Classe di Requisiti: Di stabilità Classe di Esigenza: Sicurezza

Prestazioni: Tutte le coperture devono essere idonee a contrastare efficacemente il prodursi di rotture o deformazioni gravi sotto l'azione di sollecitazioni meccaniche in modo da assicurare la durata e la funzionalità nel tempo senza pregiudicare la sicurezza degli utenti. A tal fine si considerano le seguenti azioni: carichi dovuti al peso proprio e di esercizio, carichi presenti per operazioni di manutenzione quali pedonamento di addetti, sollecitazioni sismiche, carichi dovuti a dilatazioni termiche, assestamenti e deformazioni di strutture portanti.

Livello minimo della prestazione: Comunque, in relazione alla funzione strutturale, le caratteristiche delle coperture devono corrispondere a quelle prescritte dalle leggi e normative vigenti.

ANOMALIE RISCONTRABILI

Si rimanda al manuale d'uso

CONTROLLI ESEGUIBILI DALL'UTENTE

Controllo struttura Cadenza: ogni 12 mesi Tipologia: Controllo a vista

Controllo del grado di usura delle parti in vista finalizzato alla ricerca di anomalie (fessurazioni, penetrazione di umidità, ecc.).

- Requisiti da verificare: 1) Resistenza meccanica.
- Anomalie riscontrabili: 1) Disgregazione; 2) Distacco; 3) Fessurazioni; 4) Lesioni; 5) Mancanza; 6) Penetrazione di umidità.

MANUTENZIONI ESEGUIBILI DA PERSONALE SPECIALIZZATO

Consolidamento solaio di copertura

Cadenza: quando occorre

Consolidamento del solaio di copertura in seguito ad eventi straordinari (dissesti, cedimenti) o a cambiamenti architettonici di destinazione o dei sovraccarichi.

• Ditte specializzate: Tecnici di livello superiore, Specializzati vari.

3.3 MANUTENZIONE DELLE STRUTTURE VERTICALI

La manutenzione delle strutture verticale va effettuata periodicamente ovvero eseguire la in corrispondenza di eventuali anomalie (come riportate nel manuale d'uso) o disfunzioni della struttura, di seguito verranno riportati i controlli da effettuare, il tipo di intervento da effettuare e la tipologia dello stesso nonché i requisiti minimi della ditta che dovrà intervenire.

LIVELLO MINIMO DELLA PRESTAZIONE:

<u>Resistenza meccanica:</u> Le strutture orizzontali dovranno essere in grado di contrastare le eventuali manifestazioni di deformazioni e cedimenti rilevanti dovuti all'azione di determinate sollecitazioni (carichi, forze sismiche, ecc.).

Classe di Requisiti: Di stabilità Classe di Esigenza: Sicurezza

Prestazioni: Le strutture di elevazione, sotto l'effetto di carichi statici, dinamici e accidentali devono assicurare stabilità e resistenza

Per i *livelli minimi* si rimanda alle prescrizioni di legge e di normative vigenti in materia.

ANOMALIE RISCONTRABILI:

Si rimanda al Manuale d'uso

CONTROLLI ESEGUIBILI DA PERSONALE SPECIALIZZATO

Controllo struttura Cadenza: ogni 12 mesi Tipologia: Controllo a vista

Controllare l'integrità delle strutture individuando la presenza di eventuali anomalie come fessurazioni, disgregazioni, distacchi, riduzione del copriferro e relativa esposizione a processi di corrosione dei ferri d'armatura. Verifica dello stato del calcestruzzo e controllo del degrado e/o eventuali processi di carbonatazione.

- Requisiti da verificare: 1) Resistenza meccanica.
- Anomalie riscontrabili: 1) Alveolizzazione; 2) Bolle d'aria; 3) Cavillature superficiali; 4) Crosta; 5) Decolorazione; 6) Deposito superficiale; 7) Disgregazione; 8) Distacco; 9) Efflorescenze; 10) Erosione superficiale; 11) Esfoliazione; 12) Esposizione dei ferri di armatura; 13) Fessurazioni; 14) Macchie e graffiti; 15) Mancanza; 16) Patina biologica; 17) Penetrazione di umidità; 18) Polverizzazione; 19) Presenza di vegetazione; 20) Rigonfiamento; 21) Scheggiature.
- Ditte specializzate: Tecnici di livello superiore.

MANUTENZIONI ESEGUIBILI DA PERSONALE SPECIALIZZATO

Interventi sulle strutture Cadenza: quando occorre

Gli interventi riparativi dovranno effettuarsi a secondo del tipo di anomalia riscontrata e previa diagnosi delle cause del difetto accertato.

• Ditte specializzate: Specializzati vari.

PROGRAMMA DI MANUTENZIONE

Comune:	Santa Maria del cedro				
Titolo del progetto:					
Committente:					
Opera:					
Data: 27/11/2016	Progettista:				

4 PROGRAMMA DI MANUTENZIONE

Sottoprogramma delle Prestazioni

Il sottoprogramma delle Prestazioni prende in considerazione, per ciascuna classe di requisito di seguito riportata, le prestazioni fornite dall'opera nel corso del suo ciclo di vita.

Sottoprogramma dei Controlli

Il sottoprogramma dei Controlli definisce il programma delle verifiche e dei controlli, al fine di rilevare il livello prestazionale (qualitativo e quantitativo) nei successivi momenti della vita dell'opera. Per i controlli di seguito riportati è previsto, esclusivamente, un tipo di controllo a vista.

Sottoprogramma degli Interventi di Manutenzione

Il sottoprogramma degli interventi di manutenzione riporta in ordine temporale i differenti interventi di manutenzione, al fine di fornire le informazioni per una corretta conservazione della struttura

STRUTTURE IN FONDAZIONI

Requisito: Resistenza meccanica

Le strutture in sottosuolo dovranno essere in grado di contrastare le eventuali manifestazioni di deformazioni e cedimenti rilevanti dovuti all'azione di determinate sollecitazioni (carichi, forze sismiche, ecc.).

Livello minimo della prestazione: Per i livelli minimi si rimanda alle prescrizioni di legge e di normative vigenti in materia.

Controllo: Controllo struttura

Controllare l'integrità delle pareti e dei pilastri verificando l'assenza di eventuali lesioni e/o fessurazioni. Controllare eventuali smottamenti del terreno circostante alla struttura che possano essere indicatori di cedimenti strutturali. Effettuare verifiche e controlli approfonditi particolarmente in corrispondenza di manifestazioni a calamità naturali (sisma, nubifragi, ecc.).

Controllo a vista ogni 12 mesi

STRUTTURE DI ELEVAZIONE (orizzontali e verticali)

Requisito: Resistenza meccanica

Le strutture di elevazione dovranno essere in grado di contrastare le eventuali manifestazioni di deformazioni e cedimenti rilevanti dovuti all'azione di determinate sollecitazioni (carichi, forze sismiche, ecc.).

Livello minimo della prestazione: Per i livelli minimi si rimanda alle prescrizioni di legge e di normative vigenti in materia.

Controllo: Controllo struttura

Controllare l'integrità delle strutture individuando la presenza di eventuali anomalie come fessurazioni, disgregazioni, distacchi, riduzione del copriferro e relativa esposizione a processi di corrosione dei ferri d'armatura. Verifica dello stato del calcestruzzo e controllo del degrado e/o eventuali processi di carbonatazione.

Controllo a vista ogni 12 mesi

COPERTURE PIANE

Requisito: Resistenza al vento

La copertura deve resistere alle azioni e depressioni del vento tale da non compromettere la stabilità e la funzionalità degli strati che la costituiscono.

Livello minimo della prestazione: I livelli minimi variano in funzione degli elementi impiegati per i quali si rinvia alla normativa vigente.

Controllo: Controllo dello stato

Controllo dei parapetti ed elementi di coronamento con particolare attenzione alla loro integrità e stabilità. Controllare periodicamente l'integrità delle superfici dei rivestimenti attraverso valutazioni visive mirate a riscontrare anomalie evidenti.

Controllo a vista ogni 12 mesi

Requisito: Resistenza meccanica

La copertura deve garantire una resistenza meccanica rispetto alle condizioni di carico (carichi concentrati e distribuiti) di progetto in modo da garantire la stabilità e la stabilità degli strati costituenti. Inoltre vanno considerate le caratteristiche dello strato di supporto che dovranno essere adeguate alle sollecitazioni e alla resistenza degli elementi di tenuta.

Livello minimo della prestazione: Comunque, in relazione alla funzione strutturale, le caratteristiche delle coperture devono corrispondere a quelle prescritte dalle leggi e normative vigenti

Controllo: Controllo struttura

Controllo del grado di usura delle parti in vista finalizzato alla ricerca di anomalie (fessurazioni, penetrazione di umidità, ecc.).

Controllo a vista ogni 12 mesi

CANALI DI GRONDA E PLUVIALI

Requisito: Resistenza meccanica per canali di gronda e pluviali

I canali di gronda e le pluviali della copertura dovranno garantire una resistenza meccanica rispetto alle condizioni d'uso.

Livello minimo della prestazione: Per i livelli minimi si prendono in considerazione le sequenti norme:

Controllo: Controllo dello stato

Programma di Manutenzione: Sottoprogramma delle Prestazioni

Controllare le condizioni e la funzionalità dei canali di gronda e delle pluviali. Controllo della regolare disposizione degli elementi dopo il verificarsi di fenomeni meteorologici particolarmente intensi. Verifica dell'assenza di eventuali anomalie. Controllare la funzionalità delle pluviali, delle griglie parafoglie e di eventuali depositi e detriti di foglie ed altre ostruzioni che possono compromettere il corretto deflusso delle acque meteoriche. Controllare gli elementi di fissaggio ed eventuali connessioni.

Controllo a vista ogni 6 mesi

SOLAI

Requisito: (Attitudine al) controllo della freccia massima

La freccia di inflessione di un solaio costituisce il parametro attraverso il quale viene giudicata la deformazione sotto carico e la sua elasticità.

Livello minimo della prestazione: Le deformazioni devono risultare compatibili con le condizioni di esercizio del solaio e degli elementi costruttivi ed impiantistici ad esso collegati secondo le norme vigenti

Controllo delle parti in vista finalizzato alla ricerca di anomalie che possano anticipare l'insorgenza di fenomeni di dissesto e/o cedimenti strutturali (fessurazioni, lesioni, ecc.).

Controllo a vista ogni 12 mesi

Requisito: Resistenza meccanica

I solai devono contrastare in modo efficace la manifestazione di eventuali rotture, o deformazioni rilevanti, causate dall'azione di possibili sollecitazioni.

Livello minimo della prestazione: Le prestazioni sono generalmente affidate allo strato o elementi portanti. I parametri di valutazione della prestazione possono essere il sovraccarico ammissibile espresso in daN/mq oppure la luce limite di esercizio espresso in m.

MANUTENZIONE STRUTTURE IN ACCIAIO

La manutenzione rappresenta una fase importante per la vita di una struttura in acciaio e deve essere:

- 1. tempestiva;
- 2. con modalità idonee e compatibili con il binomio materiale-ambiente;
- 3. attuata con investimenti commisurati al valore dell'opera.

L'acciaio utilizzato nel settore civile richiede sia l'adozione di metodi preventivi di protezione nei confronti della corrosione, che interventi manutentivi nel corso della vita delle strutture.

L'azione preventiva si attua mediante il rivestimento superficiale dell'acciaio.

La manutenzione nel caso di un acciaio rivestito si rende necessaria quando cessa l'effetto protettivo del rivestimento (vernici).

La perdita dell'azione protettiva delle vernici può essere attribuita:

- 1. al degrado provocato dall'atmosfera sulla superficie del rivestimento;
- 2. alla perdita di adesione al substrato metallico.

Le modalità di ripristino della funzione protettiva di un rivestimento dipendono dal tipo e dalle condizioni del vecchio rivestimento oltre che dalla possibilità che la struttura possa essere smontata e poi rimontata.

Nel caso di strutture in acciaio verniciato si deve stabilire a priori, in base all'entità del degrado subito dal rivestimento, se operare una totale rimozione dello stesso e degli ossidi o se limitare l'azione di preparazione superficiale solo alle zone più danneggiate.

Per le strutture che non possono essere smontate l'unico trattamento consigliabile è la sabbiatura, che consiste nello spruzzare mediante aria compressa un materiale abrasivo (sabbia), capace di rimuovere sia il vecchio rivestimento che gli ossidi.

Per il grado di finitura superficiale finale si può far riferimento a normative esistenti da tempo. Dopo la preparazione superficiale si deve effettuare il ciclo di verniciatura.

Il primo strato protettivo (*primer*), solitamente di spessore 20-40 μ m, deve avere tre caratteristiche fondamentali:

- 1-contenere sostanze (pigmenti) passivanti;
- 2-avere un'ottima adesione al substrato metallico;
- 3-consentire un buon ancoraggio con lo strato di vernice successivo (seconda mano).

La verniciatura si eseguirà come segue:

- **1**. sabbiatura con finitura almeno del tipo Sa 2,5;
- 2. n. 2 mani di *primer* a base di PVC modificato alchidico con cromato di zinco (80-100 μm);
- **3**. n. 2 mani intermedie di vernice a base di PVC modificato alchidico pigmentato con ossido di ferro micaceo ($120 \mu m$);
- **4.** n. 1 mano finale di PVC alchidico pigmentato con il colore desiderato (30 μ m). Quando si deve intervenire su strutture con il rivestimento organico ancora in gran parte sufficientemente protettivo il trattamento superficiale può essere effettuato rimuovendo dalle parti corrose la ruggine in modo completo oppure togliendo solo le parti incoerenti.

Nel primo caso si può operare a seconda dell'estensione delle zone da trattare con la sabbiatura o la spazzolatura.

Contemporaneamente occorrerà riattivare lo strato di vernice già esistente mediante carte abrasive o con una leggera sabbiatura per rimuovere lo strato esterno interessato dagli agenti atmosferici.

Successivamente nelle zone riportate a metallo nudo occorrerà applicare uno o due strati di *primer* passivante oppure un *primer* a base di polvere di zinco in veicolo organico e con legante compatibile al tipo di vernice già preesistente sulla struttura; quindi, una o due mani intermedie.

Infine, su tutta la struttura sarà apportato lo strato di finitura compatibile sia con il tipo di vernice presistente, sia con il ciclo di ripristino effettuato.

La verniciatura su parti rugginose, grossolanamente preparate, sarà costituita da:

- 1. primer in veicolo organico e legante alchidico con pigmento a base di ossidi rossi di piombo;
- 2. una ulteriore mano su tutta la superficie con lo stesso primer;
- **3**. due mani di finitura sempre a base alchidica pigmentate con ossido di ferro micaceo per un totale di 250-300 μ m di spessore.

Le strutture zincate e verniciate richiedono un'ulteriore attenzione rispetto a quelle in acciaio poichè la superficie dello zinco è molto più reattiva.

La manutenzione delle strutture zincate e verniciate è rivolta a ripristinare lo strato di vernice che si è grossolanamente distaccato dal substrato di zinco.

Il ripristino della verniciatura prevede una pulizia della superficie che può essere fatta ad umido lavando con acqua calda contenente il 5-10% di soda caustica, aiutandosi con spazzole o con getti di vapore additivato sempre con sostanze alcaline.

La preparazione migliore comunque rimane una sabbiatura leggera che rimuova solo i prodotti di corrosione dello zinco (ruggine bianca) e al massimo 2-5 µm di zinco metallico.

Successivamente la superficie deve essere trattata con sostanze capaci di formare strati passivi tipo acido fosforico o cromato o bicromato di sodio che servono anche da ancorante per gli strati di vernice successivi.

Saranno utilizzati *primer* passivanti contenenti zinco cromato, stronzio cromato o piombo silicocromato in concentrazioni pari al 5-10%, seguiti dai soliti cicli di verniciatura.

E' importante, in ogni caso, utilizzare vernici con leganti non saponificabili. Tra le migliori vernici per le superfici zincate si possono annoverare quelle poliviniliche o polivinilideniche, acriliche e metacriliche, epossidiche.

In presenza di macchie di ruggine rossa, l'intervento migliore consiste nel rimuovere tali prodotti di corrosione mediante azione meccanica riportando completamente a nudo l'acciaio e quindi operare una zincatura localizzata mediante spruzzatura di zinco fuso oppure stendere uno strato di *primer* zincante a base di polvere di zinco metallico.

Una concomitante pulitura generale di tutta la superficie della struttura con una successiva verniciatura garantisce una lunga durata del rivestimento.

Comune di Santa Maria del Cedro

Provincia di Cosenza

<u>PROGETTO:</u> REALIZZAZIONE NUVO EDIFICIO PUBBLICO, DESTINATO A SCUOLA CON STRUTTURA IN LEGNO NEL COMUNE DI SANTA MARIA DEL CEDRO (CS). CLASSE D'USO DELLA COSTRUZIONE 3.

<u>PRATICA:</u> REALIZZAZIONE DEGLI INTERVENTI DIRETTI ALL'AMPLIAMENTO DELLA SCUOLA ELEMENTARE UBICATA IN VIA ORSOMARSO DEL COMUNE DI SANTA MARIA DEL CEDRO FRAZIONE MARCELLINA.

II Committente

Comune di Santa Maria del Cedro

via Nazionale n.16 87020, Santa Maria del Cedro (CS) Tel. 0.985/5727 - C.F. 00433700788

Il Responsabile del Servizio

Dott. Ing. Giuseppe Durante

I Progettisti e DD.LL.

Dott. Geom. Giuseppe Riccetti

Geom. Carmine Covucci

Data: novembre 2016

Tavola : Integrazione

2

Scala:

Elaborato:

Verifica di Resistenza al Fuoco ai sensi del § 4.4.14 del NTC

2008 e circ. n.617/2009

Visti e Pareri :

Aggiornamenti:

VERIFICA DI RESISTENZA AL FUOCO TRAVE

Caratteristiche Trave.

Altezza h= 32 cm

Base b=16 cm

Interasse i = 1,42 mt

Luce l=4,50 mt

Caratteristiche Sezione Ridotta.

Materiale: legno di abete lamellare glh24

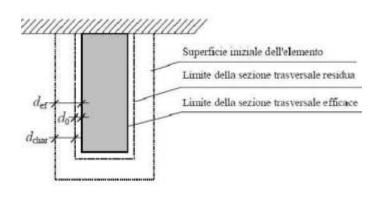
Classe di Resistenza **REI 60** (tempo di esposizione al fuoco t=60min.)

Tipo di Esposizione 3 lati

Sezione Rettangolare in Legno Lamellare GL24h), Massa > 380,00 kg/m³; (560,00 kg/m³)

Velocità di Carbonizzazione bo=0,80 mm/min.

Profondità zona Carbonizzata dchar=42 mm.


Profondità zona Alterata do=7 mm.

Coefficiente di Carbonizzazione t=60 min. ko=1

Profondità effettiva di Carbonizzazione def=dchar+kodo=49 mm.

Base ridotta = 6,20 cm

Altezza ridotta = 27,10 cm

VERIFICHE

Per la struttura in oggetto, i carichi sono

Peso Proprio	18 Kg/mq	0.18 KN/mq	
Carico fisso	150 Kg/mq	1.50 KN/mq	
Carico Variabile	50 Kg/mq	0.5 KN/mq	
Carico Neve	50 Kg/mq	0.5 KN/mq	

Se si considera l'interasse tra le travi pari a 1.42 m, si otterrà un carico distribuito pari a

Peso Proprio	18 Kg/mq	0.18 KN/mq	0.2556 KN/m	G1
Carico fisso	150 Kg/mq	1.50 KN/mq	2.13 KN/m	G2
Carico Variabile	50 Kg/mq	0.5 KN/mq	0.71 KN/m	Q1
Carico Neve	50 Kg/mq	0.5 KN/mq	0.71 KN/m	Q2

Considerando la combinazione di carichi eccezionali (NTC cap 2.5.3) con i fattori Ψ riportati in tabella 2.5.1 (Ψ 2j=0.6 per ambienti di categoria C, Ψ 2j=0.0 per carico neve sotto i 1000 m)

Si otterrà la combinazione

G1+G2+0.5*Q1+0.00*Q2 = 18 Kg/mq +150 Kg/mq + 0.6*50 Kg/mq = 183Kg/mq Considerando l'interasse 1.42 m, si otterrà un carico per unità di lunghezza pari a 259.86 Kg/ml

- Trave esposta al fuoco su tre lati.
- Trave inflessa semplicemente appoggiata di sezione rettangolare (cm 6,20x27,10), caricata uniformemente su tutta la luce.
- Carico totale per metro lineare 170,00 kg/ml
- Resistenza massima a flessione in caso di incendio UNI 9504 σ f = 180-240 Kg/cm²
- Resistenza a taglio = 15kg/cm²

Tipo di legno Proprietà massiccio lamellare * Resistenza a flessione 16,0 N/mm² da 18 a 24 N/mm² Resistenza a trazione parallela 10.0 N/mm² da 15 a 19 N/mm² Resistenza a trazione perpendicolare 0,3 N/mm² 0,4 N/mm² Resistenza a compressione parallela 15,0 N/mm² da 15 a 21 N/mm² Resistenza a compressione perpendicolare 5.5 N/mm² N/mm² 5.5 Resistenza a taglio 1,5 N/mm2 1,5 N/mm² Modulo di elasticità flessionale N/mm² 8 000 da 9 000 a 10 000 N/mm² Modulo di elasticità tangenziale N/mm² 500 N/mm² 500 Velocità di penetrazione della carbonizzazione 0.9 mm/min 0.7 mm/min La scelta dei valori di calcolo fra gli estremi indicati dipende dalla garanzia di qualità del lamellare utilizzato.

Valori di calcolo

1. Momento Max

$$M = ql^2/8 = 260 \text{ Kg/m} * (4,50 \text{ m})^2 = 658 \text{ kg*m}$$

$$\sigma_{max} = \frac{M}{J} * \frac{h}{2}$$

$$J = \underline{b * h^3} = \underbrace{0.062m * (0.2710m)^3}_{12} = 0.0001028296 \text{ m}^4 = 10.282,96 \text{ cm}^4 \text{ momento di inerzia}$$

$$\sigma_{\text{max}=} \quad \underline{430 \text{ kg*m} * 0,1355\text{m}}_{0,0001028296\text{m}^4} = 867.055,79 \text{ Kg/m}^2$$

$$\sigma_{\text{max}} = 867.055,79 \text{ Kg/m}^2 = 86,706 \text{ Kg/cm}^2 < 180 \text{ Kg/cm}^2 \frac{\text{Verificato}}{\text{Verificato}}$$

2. Taglio

$$T = ql/2 = 260 \text{ kg/m}*4,50\text{m}/2 = 585 \text{ kg}$$

$$\tau = \frac{T * S}{J*b}$$

$$S=(6,2cm*13,55cm)*13,55cm/2=569,17cm^3$$
 momento statico

$$J = b*h^3/12 = 6.2 \text{cm}*(2.71 \text{cm})^3/12 = 10.282,96 \text{ cm}^4$$
 momento di inerzia

$$\tau = \frac{585 \text{ kg*}569,17 \text{ cm}^3}{10.282,96 \text{ cm}^4*6,2 \text{ cm}} = 5,22 \text{ kg/cm}^2 < \text{di } 15\text{kg/cm}^2 \text{ (resistenza a taglio)}$$
 $\frac{\text{Verificato}}{10.282,96 \text{ cm}^4*6,2 \text{ cm}}$

VERIFICA DI RESISTENZA AL FUOCO PILASTRO

Caratteristiche Pilastro.

Altezza h=32 cm

Base b=16 cm

Luce Trave = 4,50 mt

Caratteristiche Sezione Ridotta.

Materiale: legno di abete lamellare glh24

Classe di Resistenza **REI 60** (tempo di esposizione al fuoco t=60min.)

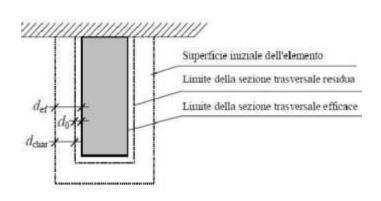
Tipo di Esposizione 3 lati

Sezione Rettangolare in Legno Lamellare GL24h), Massa > 380,00 kg/m³; (560,00 kg/m³)

Velocità di Carbonizzazione bo=0,80 mm/min.

Profondità zona Carbonizzata dchar=42 mm.

Profondità zona Alterata do=7 mm.


Coefficiente di Carbonizzazione t=60 min. ko=1

Profondità effettiva di Carbonizzazione def=dchar+kodo=49 mm.

Base ridotta = cm 6,20

Altezza ridotta = 22,20 cm

Area Ridotta = $137,64 \text{ cm}^2$

VERIFICHE

- Pilastro esposto al fuoco su tre lati.
- Ipotizzando la trave appoggiata su due pilastri
- Carico totale su ogni pilastro ql/2= 260 kg/m*4,50m/2= 585 kg
- Resistenza a compressione alle fibre 5,5 N/mm²= 55 kg/cm²

Sforzo normale

 $N/A = 585 \text{ kg}/137,64 \text{ cm}^2 = 4.2 \text{ kg/cm}^2 < 55 \text{ kg/cm}^2$ Verificato